
Carnegie Mellon
Software Engineering Institute

DISTRIBUTION STATEMENT A
Approved for Public Release

distribution Unlimited

ACSE 2003

>rd 3 International Workshop
on Adoption-Centric
Software Engineering

ICSE 2003 IEEE/ACM International
Conference
on Software Engineering
Portland, Oregon
May 3-11, 2003

editors:
Robert Balzer, Teknowledge Corporation
Jens-Holger Jaiinke, University of Victoria
Marin Litoiu, IBM Canada Ltd.
Hausi A. Muller, University of Victoria
Dennis B. Smitii, Software Engineering Institute
Margaret-Anne Storey, University of Victoria
Scott R. Tiliey, Florida Institute of Technology
Kenny Wong, University of Alberta
Anke Weber, University of Victoria

June 2003

SPECIAL REPORT
GMU/SEI-2003-SR-004

20030822 123

CamegieMellon
Software Engineering Institute
Pittsburgh, PA 15213-3890

ACSE 2003

3'"* International Workshop
on Adoption-Centric
Software Engineering
ICSE 2003
IEEE/ACM International Conference
on Software Engineering
Portland, Oregon
May 3-11.2003

CMU/SEI-2003-SR-004

editors:
Robert Balzer, Teknowledge Corporation

Jens-Holger Jalinl<e, University of Victoria

Marin Litoiu, IBIVI Canada Ltd.

Hausi A. MiJIIer, University of Victoria

Dennis Smith, Software Engineering Institute

Margaret-Anne Storey, University of Victoria

Scott R. Tilley, Florida Institute of Technology

Kenny Wong, University of Alberta

Anke Weber, University of Victoria

June 2003

Unlimited distribution subject to tlie copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
HanscomAFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Christos Scondras
Chief of Programs, XPK

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2003 by Carnegie Mellon University.

NO WARRANTY

TfflS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING BUT NOT
LIMITED TO, WARRANTY OF HTNESS FOR PURPOSE OR MERCHANTABILITY EXCLUSIVITY OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie Mel-
lon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work,
in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copy-
right license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

ACSE 2003
3rd International Workshop

on Adoption-Centric
Software Engineering

ICSE 2003
IEEE/ACM International Conference

on Software Engineering
Portland, Oregon
May 3-11, 2003

ACSE 2003
PROCEEDINGS

3*^^ International Workshop
on Adoption-Centric

Software Engineering

9 May 2003 • Portland, Oregon, USA

Workshop at ICSE 2003
25*^ IEEE/ACM International

Conference on Software Engineering

Table of Contents

Abstract '"

Organizing Committee vii

Introduction: 3rd International Workshop on Adoption-Centric Software

Engineering .1

PROBLEMS: Adoption Challenges, Issues, and Factors
On the Challenges of Adopting ROTS Software 3
Tool Adoption: A Software Developer's Perspective 7
The Need for Adoption Issues in Enterprise Integration 10

Adoption-Centric Knowledge Engineering 14

THEORIES: Adoption Models and Cognitive Support
On the Yin and Yang of Academic Research and Industrial Practice 19
Two Good Reasons Why New Software Processes are Not Adopted 23
Leveraging Cognitive Support and Modern Platforms for Adoption-Centric
Reverse Engineering (ACRE) 30
Improving Adoptability by Preserving, Leveraging, and Adding Cognitive
Support To Existing Tools and Environments 36

APPLICATIONS: Effective Development, Authoring, and Learning
Environments
A Lightweight Project-Management Environment for Small Novice Teams 42
Adopting GILD: An Integrated Learning and Development Environment for
Programming 49
An Authoring Framework for Live Documents: Collaborative Writing with Infinite
Persistent Annotated Change Tracking (ImPACT) 55
Evaluating the Eclipse Platform as a Composition Environment 59

TECHNIQUES: Tool Interoperability, Integration, and Extension
Matching Multiple COTS: Can We Achieve a Happy Marriage? 62

CMU/SEI-2003-SR-004

Integrating a Tool into Multiple Different IDEs 67
Hosted Services for Advanced V&V Technologies: An Approach to Achieving
Adoption without the Woes of Usage 72

Adoption of Software Engineering Practices: Monitoring Validity of Developer
Decisions in Simple Software Tool Extensions 76

LESSONS LEARNED: Case Studies and Experiences
Tool Adoption Issues in a Very Large Software Company 81
A Visual Language in Visio: First Experiences 90

Challenges Faced in Adopting Automated Standards Enforcement Tools 94

On the Security Risks of Not Adopting Hostile Data Stream Testing Techniques.... 99

CMU/SEI-2003-SR-004

Abstract

This report contains a set of papers that were presented at the Third International Workshop
on Adoption-centric Software Engineering (ACSE). The papers focused on overcoming bar-
riers to adopting research tools. Such barriers include the user's lack of familiarity with the
tools, the mismatch between the tools and the users' cognitive models, a lack of interface ma-
turity, limited tool scalability, poor interoperability and limited support for complex software
engineering development tasks. The workshop papers explored innovative approaches to the
adoption of software engineering tools and practices in particular by embedding them with
middleware products and other commonly available commercial products.

CMU/SEI-2003-SR-004

CMU/SEI-2003-SR-004 jv

Organizing Committee

Dr. Robert Balzer, Teknowledge Corporation, USA
After several years at the Rand Corporation, Dr. Balzer left to help form the University of
Southern California's Information Sciences Institute (USC-ISI) where he served as Director of
ISI's Software Sciences Division and Professor of Computer Science at USC. In 2000 he joined
Teknowledge Corporation as their CTO and Director of their Distributed Systems Unit, which
combines AI, DB, and SE techniques to automate the software development process. His current
research includes wrapping COTS products to provide safe and secure execution environments,
extend their functionality, and integrate them together; instrumenting software architectures; and
generating systems from domain specific specifications.

Dr. Jens-Holger Jahnke, University of Victoria, Canada
Dr. Jahnke is an Assistant Professor at the University of Victoria, Canada. He holds a doctoral
degree (summa cum laude) from the University of Paderbom, Germany. He received the E.
Denert Software Engineering Award in 2000 and has been appointed an Industrial Research
Fellow by the Advanced Systems Institute of British Columbia. He is a Principal Investigator of
the Consortium for Software Engineering Research (CSER). His current research focuses on
network-centric aspects of software engineering, in particular system mediation, system reverse
engineering, embedded systems, data reengineering, and connection-based programming.

Dr. Marin Litoiu, IBM Canada Ltd., Canada
Dr. Litoiu is member of the Centre for Advanced Studies at the IBM Toronto Laboratory where
he initiates and manages joint research projects between IBM and Universities across the globe in
the area of Application Development Tools. Prior to joining IBM (1997), he was a faculty
member with the Department of Computers and Control Systems at the University Politechnica
of Bucharest and held research visiting positions with Polytechnic of Turin, Italy, (1994 and
1995) and Polytechnic University of Catalunia (Spain), and the Eiu-opean Center for Parallelism
(1995). Dr. Litoiu's other research interests include distributed objects; high performance
software design; performance modeling, performance evaluation and capacity planning for
distributed and real time systems.

Dr. Hausi A. IVJiJIIer, University of Victoria, Canada
Dr. Miiller is a Professor at the University of Victoria, Canada. He is a Visiting Scientist with the
Centre for Advanced Studies at the IBM Toronto Laboratory and the Carnegie Mellon Software
Engineering Institute. He is a principal investigator of CSER. Together with his research group he
investigates technologies to build adoption-centric software engineering tools and to migrate
legacy software to object-oriented and network-centric platforms. Dr. Miiller's research interests
include software engineering, software evolution, reverse engineering, software reengineering,
program understanding, software engineering tool evaluation, and software architecture. He is
GC for IWPC-2003. He was GC for ICSE-2001.

CMU/SEI-2003-SR-004

Dr. Dennis B. Smith, Carnegie Mellon Software Engineering Institute, USA
Dr. Smith is a senior member of the technical staff in the Product Line Systems Program at the
Software Engineering Institute. He is the technical lead in the effort for migrating legacy systems
to product lines. In this role he has integrated a number of techniques for modernizing legacy
systems from both a technical and business perspective. Dr. Smith has been the lead in a variety
of engagements with external clients. He led a widely publicized audit of the FAA's troubled
ISSS system. This report produced a set of recommendations for change, resulting in major
changes to the development process, and the development of an eventual successful follow-on
system. Earlier, Dr. Smith was project leader for the CASE environments project. This project
examined the underlying issues of CASE integration, process support for environments and the
adoption of technology. He is also a co-editor of the IEEE and ISO recommended practice on
CASE Adoption. He has been general chair of two international conferences, IWPC'99 and
STEP'99.

Dr. Margaret-Anne Storey, University of Victoria, Canada
Dr. Storey is an Assistant Professor at the University of Victoria. Her main research interests
involve understanding how people solve complex tasks, and designing technologies to facilitate
navigating and understanding large information spaces. With her students and she is working on a
variety of projects within the areas of software engineering, human-computer interactison,
information visualization, social informatics and knowledge management. Dr. Storey is a fellow
of the AS! and as susch collaborates with the IBM PDC on HCI issues for eCommerce and
distributed learning applications, and with ACD systems. She is a principal investigator for CSER
developing and evaluating sofhvare migration technology and a visiting researcher at the IBM
Centre for Advanced Studies.

Dr. Scott R. Tilley, Florida Institute of Technology, USA
Scott Tilley is an Associate Professor at the Florida Institute of Technology. He is also Principal
of S.R. Tilley & Associates, a Southern California-based information technology consulting
boutique. He maintains an appointment as Visiting Scientist with the Software Engineering
Institute at Carnegie Mellon University. He was PC Chair for SIGDOC 2001, and is GC of the
WSE 2003.

Dr. Kenny Wong, University of Alberta, Canada
Ken Wong is an assistant professor at the University of Alberta. His main areas of research are
software architecture, integration, evolution, and visualization. This research includes conducting
case studies, building and using integrated environments for reverse engineering, and exploring a
framework for continuous, collaborative program understanding. Current industrial collaborations
include IBM, KLOCwork Inc., and Intuit Canada. He is a principal investigator of CSER and
ASERC. He co-manages a Canadian Foundation for Innovation facility to study distributed
software development, with connected, experimental laboratories at the University of Calgary
and University of Alberta. Dr. Wong is also PC Chair for IWPC 2003 and WSE 2003.

CMU/SEI-2003-SR-004 VI

3"^^ International Workshop on Adoption-centric Software Engineering
ACSE 2003

http://www.acse2003.cs.uvic.ca

Robert Balzer,' Jens Jahnke,^ Marin Litoiu,^ Hausi A. MuUer,^
Dennis B. Smith/ Margaret-Anne Storey,^ Scott R. Tilley,^ Ken Wong^

^Teknowledge Corporation, USA; '^University of Victoria, Canada
^IBM Canada Ltd., Canada; '^Carnegie Mellon Software Engineering Institute, USA

^Florida Institute of Technology, USA; ^University of Alberta, Canada;
balzer(d),teknowledse.com, iens(cb,cs.uvic.ca, marin(a),ca.ibm.com, hausi(d),cs.uvic.ca,

dbs(a)jsei. emu, edu. mstorev(a),cs. uvic. ca, stillev(a),cs. fit, edu, kenw(a).cs. ualberta. ca

Abstract

The key objective of this workshop is to explore
innovative approaches to the adoption of software
engineering tools and practices—in particular by
embedding them in extensions of Commercial Off-The-
Shelf (COTS) software products and/or middleware
technologies. The workshop aims to advance the
understanding and evaluation of adoption of software
engineering tools and practices by bringing together
researchers and practitioners who investigate novel
solutions to software engineering adoption issues.

1. Workshop theme and goals

Understanding adoption of software engineering tools
and practices is critical for the software and information
technology sectors, which are continually challenged to
increase their productivity. Recent advances in effective
standards and interfaces for tool extension and
customization have opened new research avenues, which
allow software engineering tools and technologies to be
incorporated into commonly used Commercial Off-The-
Shelf (COTS) products and middleware platforms and
adopted as extensions of those COTS products.

The key objective of this workshop is to explore
approaches where software engineering tools and
practices are implemented as extension of COTS software
products and middleware technologies that work in
conjunction with software engineering tools as well as
mined components. The workshop aims to advance the
understanding and evaluation of adoption of software
engineering tools and practices.

Research tools in software engineering often fail to be
adopted and deployed in industry. Important barriers to
adopting these tools include the user's lack of familiarity
with these tools, their mismatch with the users' cognitive

models, their lack of interface maturity, their limited
scalability, their limited support for complex work
products of software development, their poor
interoperability, and their limited support for the realities
of system documentation engineering. Developing and
deploying innovative research tools and ideas as
extensions to modem, commonly used platforms may
ease these barriers.

2. How can the workshop advance software
engineering research in practice?

One key problem in software engineering research is
the integration of research tools into industrial software
development processes. Tools developed by the software
engineering research community often remain orphans
due to adoption problems since research tools are rarely
built for an industrial setting. Developing effective
techniques and strategies to overcome this problem is
timely and will have great value to the software and
information technology sectors. Injecting more of the
leading-edge software engineering research results into
industrial practice has a potentially significant impact on
the production of quality software. Thus, this research
addresses three diverse markets: the software developers,
who need to understand and document existing software
systems, the researchers, who want to inject and validate
their research tools in industrial development processes,
and the tool users, who want to leverage their personal
work environment in software engineering tools.

3. Background and related work

The notion of building software systems fi-om existing
building blocks, components, or parts has been around
since the Sixties. Communities, such as Software Reuse,

CMU/SEI-2003-SR-004

Commercial-of-the Shelf Components (COTS), or CBSE
(Component-Based Software Engineering) have
investigated many approaches and developed effective
solutions to this problem. Their approaches differ in many-
aspects, including the granularity, genericity, or wrapping
of the components. The goal of ACSE is to take a
significant step back and approach this perennial problem
from a radically different perspective. The idea is to select
the host components according to a variety of adoption
criteria.

Shaw observed that systems, such as interactive
graphics applications, devote less than 10% of their code
to the overt function of the system and more than 90% to
the user interface [1]. Reiss leveraged FrameMaker, a
COTS editor, for all editing aspects in his Desert software
development environment [2]. Sullivan, Knight and
Coppit use the term Package-Oriented Programming
(POP) to support tasks, such as document embedding and
scripting [3, 5]. The Software Bookshelf, built on top of
Netscape, exploits the familiar Web interface [4].

In several recent conference keynotes, Balzer has
advocated that software engineering researchers should
exploit large COTS products for building software
engineering tools rather than constructing stand-alone
tools [7, 9]. Egyed and Balzer proposed an integration-
architecture for COTS products, which provides access
and visibility into the document information contained
within a COTS tool [6]. The information that is shared
with external tools allows users to track user actions and
provide analysis and automation services for the user
within the COTS tool. For example, they exploited this
architecture to add semantics to PowerPoint diagrams and
Word documents and to build defenses against malicious
e-mail attachments.

The mandate of the Technology Transition Practices
(TPP) group at Software Engineering Institute (SEI) is to
identify, develop, promote, and apply practices that result
in more rapid, affordable, and sustained transition of
iimovative software engineering technologies [10].

The hypothesis of the ACRE project [8] is that
developers will more likely adopt tools that leverage the
cognitive support and interoperability mechanisms of
tools they use daily and know intimately (e.g., Lotus
Notes, Office XP, or StarOffice). To increase their
productivity, developers accumulate sripts, macros, and
shortcuts in their personal work environment. Reusing
such hard-won and treasured cognitive support features is
a central idea of this project.

Beyond user-to-tool compatibility concerns of
cognitive support, there must also be tool-to-tool
compatibility. Towards this end, interoperability
mechanisms for data, control, and presentation integration
are critical factors to tool adoption. Recently developed
middleware standards and technologies can offer

unprecedented possibilities to seamlessly integrate new
research tools into existing, familiar environments.

Since it is difficult to evaluate tool adoption in the
course of a research project, ACRE concentrates on
investigating how to leverage cognitive support and
interoperability mechanisms from COTS products for
software exploration and visualization tools.

4. References

[1] M. Shaw, "Prospects for an Engineering Discipline of
Software," IEEE Software, 7(6): 15-24, Nov. 1990.

[2] S.P. Reiss, "Simplifying Data Integration: The Design
of the Desert Software Development Environment,"/"roc.
18th IEEE/ACM Int. Conf. on Software Engineering,
Berlin, Germany, pp. 398-407, March 1996.

[3] K.J. Sullivan and J.C. Knight, "Experience Assessing
an Architectural Approach to Large-Scale, Systematic
Reuse," Proc. 18th IEEE/ACM Int Conf on Software
Engineering, Berlin, Germany, pp. 220-229, March 1996.

[4] P. Finnigan, R. Holt, 1. Kalas, S. Kerr, K.
Kontogiannis, H. Muller, J. Mylopoulos, S. Perelgut, M.
Stanley, and K. Wong, "The Software Bookshelf," IBM
Systems Journal, Vol. 36, No. 4, pp. 564-593, Nov. 1997

[5] D. Coppit and K.J. Sullivan, "Multiple Mass-Market
Applications as Components. Proc. 22nd IEEE/ACM Int.
Conf on Software Engineering, Limerick, Ireland, pp.
273-82, June 2000.

[6] A. Egyed and R. Balzer, "Unfriendly COTS
Integration: Instrumentation and Interfaces for Improved
Plugability," Proc. 16"' IEEE Int Conf on Automated
Software Engineering (ASE 2001), San Diego, USA, pp.
223-231, Nov. 2001.

[7] R. Balzer, "Tolerating Inconsistency Revisited," Proc.
23rd IEEE/ACM Int. Conf on Software Engineering
(1CSE2001), Toronto, Canada, p. 665, May 2001.

[8] H.A. Muller, M.-A. Storey and K. Wong, "Leveraging
Cognitive Support and Modem Platforms for Adoption-
Centric Reverse Engineering (ACRE)," CSER Research
Proposal, Nov. 2001. www.acse.cs.uvic.ca

[9] R. Balzer, "Living with COTS," 24th IEEE/ACM Int.
Conf on Software Engineering (ICSE 2002), Orlando,
USA, p. 5, May 2002 and 2'"' Int. Conf on COTS-Based
Software Systems, Ottawa, Canada, Feb 2003.

[10] Technology Transition Practices (TPP) Group,
Software Engineering Inst., 2002. vyww.sei.cmu.edu/ttp/

CMU/SEI-2003-SR-004

On the Challenges of Adopting ROTS Software

Scott Tilley
Department of Computer Sciences

Florida Institute of Technology
stilley@cs.fit.edu

Shihong Huang
Department of Computer Science

University of California, Riverside
shihong@cs.ucr.edu

Tom Payne
Department of Computer Science

University of California, Riverside
thp@ cs.ucr.edu

Abstract
One of the reasons why research tools often remain lab
orphans is that it is so difficult for third parties to adopt
the solution and make efficient use of it in their own work.
This paper outlines some of our experiences in adopting
research-off-the-shelf (ROTS) software in the application
domain of optimizing compilers. While it is true that there
are always difficulties using prescribed solutions in
complex applications, there are unique challenges
inherent in ROTS software. These include
understandability (e.g., a lack of high-quality
documentation), robustness, (e.g., an implementation that
is not quite ready for prime time) and completeness (e.g.,
a partial solution due to an implicit focus on getting "just
enough" done to illustrate the feasibility of a solution,
rather than going the "last mile" to bring the prototype to
market). In this context, we offer several
recommendations meant to address the challenges of
adopting ROTS software.

Keywords: adoption, research-off-the-shelf (ROTS)
software, optimizing compilers, frameworks

1. Introduction

The problems associated with technology transition
and adoption are many and manifold. In our opinion,
adoption is one of the most important, yet perhaps least
appreciated, areas of interest in academic computer
science circles. The importance of managing adoption
issues in the context of software engineering is attested to
by Carnegie Mellon's Software Engineering Institute:
"Technology Adoption" is one of their three main top-
level focus areas (the other two being "Management
Practices" and "Engineering Practices") [6]. Indeed, it can
be argued that "transitionability" as a quality attribute
should receive more emphasis in most software projects
[8].

In the book Crossing the Chasm [5], Geoffrey Moore
describes the challenges in bridging the gap between two
groups. The first group is the early adopters of new and
promising technology. The second group is the vast
majority of people who are part of the mainstream market

that will wait until the technology is proven, not just
promising. In the context of software produced in an
academic or research setting, which we call "research-off-
the-shelf (ROTS) software, this problem is very much
present, albeit in a shghtly different form.

The early adopters of ROTS software are usually
other academics. For example, the next generation of
graduate students who will continue the work begun by
their supervisor or by the previous students who have
completed their degrees. The mainstream market for such
ROTS software may therefore not necessarily be the
general public (as is the case with a commercial
application), but rather other groups and labs in related
communities.

However, truly widespread dissemination (while
rarer) is still possible - and potentially very lucrative
when it does occur. Since 1980, American universities
have spun off more than 2,200 startups whose sole
purpose is to commercialize results that began in research
labs, resulting in a contribution of over $40B annually to
the U.S. economy [10]. Indeed, for research areas that are
more applied, such as software engineering, broad
adoption is often an important (long term) goal of the
project. For example, it may be a measure of success for
the results of an academic project to be adopted by an
industrial partner and used on a regular basis. It is
therefore critically important for people involved in
applied software engineering research to be cognizant of
some of the challenges that they will face when it comes
to convincing others to adopt their results.

Unfortunately, such awareness is not the norm. In the
continuum of technology transition phases, "adoption" is
the fourth phase (after "contact", "understanding", and
"trial use", and before the last phase of
"institutionalization") in a product's acceptance [7].
Examples of transition mechanisms that are applicable to
the adoption phase are handbooks, third-party case
studies, and quantitative data. For many research projects
involved in producing ROTS software, such transition
mechanisms are rarely addressed.

The next section discusses some of the challenges
that are intrinsic to the problem domain of ROTS
software. Section 3 discusses more prominent challenges
that directly affect the adoption of ROTS software by

CMU/SEI-2003-SR-004

other users. Section 4 provides a brief set of
recommendations that might help alleviate these
problems. Finally, Section 5 summarizes the paper and
outlines possible avenues for further work in the area.

2. Challenges with the Problem

By their very nature, the problems that academics and
researchers work on are complex. Otherwise, there would
be little interest in working on the problem in the first
place. This gives rise to unique challenges with the
problem domain - challenges that have direct impact on
adoption challenges with the corresponding ROTS
solution. For example, the problem being addressed may
be so removed from the current needs of potential users
that any solution to this problem will have great
difficulties in being adopted (at least in the short term).
Christensen refers to this phenomenon as "Principle #4:
Technology Supply May Not Equal Market Demand" in
the book The Innovator's Dilemma [3].

By definition, complex subjects require a deep
understanding of the key issues pertaining to the specific
problem being studied. For most computer topic areas, the
amount of secondary and tertiary knowledge required to
properly master a modem topic is quite significant.
Consider bioinformatics: a researcher working in this area
needs to be adept at computer science topics (such as
algorithm analysis and design, complexity theory, and
search strategies), biology topics (such as understanding
the structure of DNA, gene sequencing techniques, and
bio-chemical evolution of cell material), and have the
ability to relate one area to another with ease.

For those working in software engineering, the scale
and scope of today's problems is equally challenging. In
fact, it has been said that progress in the area can only be
made by those who are multi-specialists [10]. This means
someone who is skilled in the underlying areas of
computer science, engineering discipline, and information
technology, and adept at moving between the three of
them.

Consider our own experience performing research
and teaching courses in the area of optimizing compilers.
At the graduate level, students are expected to have
already mastered the basics of compiler technology
(which is no small feat in itself). The focus of the second
compiler design course is on developing algorithms for
various types of program optimization, such as dead code
elimination, and then implementing and evaluating the
efficacy of these algorithms. Just understanding the theory
behind some of these code optimizations is quite
challenging; property implementing them is extremely
challenging (especially in a time-constrained ten-week
quarter).

Any project to implement various optimizations
requires a framework in which to test those routines. This

framework must be capable of creating symbol tables and
lists of intermediate instructions. It must also be able to
display the optimized intermediate code for comparison
with the original. As part of a Master's thesis, one of our
graduate students developed the RIF (Riverside
Intermediate Format), a portable, human-readable, and
machine-processable format for medium-level program
representation [9]. It is based on C- (pronounced "see
minus minus"), a close subset of the C programming
language. Since it is based on C, most programmers can
quickly learn the syntax and semantics of the C-
language. Moreover, existing tools such as the Gnu C
compiler (gcc) can be used to process the C~ source,
thereby leveraging the investment made in existing
toolsets. Nevertheless, there are considerable challenges
of adopting the RIF as ROTS software by other students
for their own use in the class projects. The next section
outlines some of these challenges.

3. Challenges with the Solution

Developing software solutions in an academic setting
is both qualitatively and quantitatively different than
developing similar solution in a commercial setting.
These differences lead to numerous adoption challenges
with the ROTS solution. This section discusses three of
the most common challenges: understandability,
robustness, and completeness, using the RIF as a concrete
example.

3.1 Understandability

The first challenge of adopting ROTS software is
understandability (or the lack thereof). The typical ROTS
solution is rarely ready to be used by anyone other than its
author (and sometimes not even then). The short-term
goal of ROTS software, especially that produced as part
of a thesis or dissertation, is usually to produce a "proof
of concept" solution - not a shrink-wrap product suitable
for others to use "off the shelf. If the intention is not to
produce software for others to use, then it is extremely
difficult to reengineer ROTS software so that others can
adopt it after the fact.

In the case of the RIF, using the scaffolding it
provides to carry out code optimization experiments is
nontrivial. The RIF is implemented in standard C-H- and
relies heavily on the Standard Template Library (STL)
[1]. The implementation relies on C++ templates
extensively, to enrich its intermediate representation and
make it more type-safe, to make the library more flexible
and convenient to use, and to decrease the amount of
library source code that must be maintained. It also
utilizes multiple inheritance to maximize reuse and to
most effectively represent unique concepts with distinct
classes.

CMU/SEI-2003-SR-004

While these design goals are laudable and in fact
reflect current thinking in modem object-oriented design,
they can also make the code very difficult to understand.
Unless one is well-versed in the nuances of advanced
generic programming using the STL, it is not obvious
which classes should be used, how they should be used to
make the program efficient, and how to debug the result
when something inevitably goes wrong.

A reference manual for the RIF is available.
However, it is not complete. Most of the students find
themselves poring over the RIF source code, occasionally
consulting the RIF author's thesis itself, to obtain
guidance on how to use the facilities the RIF provides.

3.2 Robustness

The second challenge of adopting ROTS software is
that the people coding the solution are rarely professional
software developers. This may not be the case if the
person doing the coding is, for example, a research
associate whose primary responsibility may be to create a
robust ROTS solution that is closer to commercial quality
than the norm.

However, the programmer is more often a graduate
student, someone who is trying to do his or her best, in a
short period of time, and just get "something" running.
Since most computer science students do not take
software engineering classes (to say nothing of students in
other disciplines, such as bioinformatics), they have little
guidance or background upon which to draw best
practices. The not-very-surprising result is that much
ROTS software is of very poor quality.

Interestingly, this was not the case with the RIF. The
code is generally quite well written. That may be because
a robust implementation was one of the key goals of the
thesis, and hence was something upon which the value of
the student's work was judged. However, robust code is
not necessarily the most usable or complete code.

3.3 Completeness

The third challenge of adopting ROTS software is
that there is very little incentive for the researcher to
create a complete solution. After all, if the main reason
the program was written was to test a hypothesis, or
provide enough evidence that a "real" solution to the
problem under investigation could be engineered given
enough time and effort, then once this more modest goal
has been achieved, most researchers will move oh to the
next problem. For students working on a thesis, once the
minimum amount of required coding is done, it's done.

In the case of the RIF, the library was adopted as the
development platform for students to use in subsequent
offerings of the graduate compiler class. While the
student who did the bulk of the implementation was

primarily concerned with getting the minimal
functionality working "just enough" to complete the
degree requirements, there was also an incentive to
construct the RIF to be as usable as possible. But that was
only because this was one of the criteria for success for
the thesis itself In most other cases, ROTS software is a
means to an end, not an end in itself.

4. Recommendations

We believe that to properly address the challenges of
adopting ROTS software, the academic community must
address several fundamental issues. Obviously, these
recommendations only apply to those problem domains
and research projects working in more applied areas, or
that have as one of their main goals technology transfer.
This is not true of all academic efforts, nor should it be.
There will always be a place for pure science and
investigation for its own benefit. However, for areas like
software engineering, adoption is becoming more and
more important. In fact, we believe that it should be
considered essential to any declaration of success.

4.1 Improve Programming Sldlls

The first recommendation is to train students to be
better software developers. Although the ultimate goal
might be to instill the same level of discipline and rigor in
students as exists in professional and conscientious
software engineers working in mature organizations, this
might not be realistic. However, there are concrete steps
that can be taken to improve the quality of the code they
produce.

The latest draft of the joint ACM/IEEE SEEK (The
Software Engineering Education Body of Knowledge)
document lists "software construction" as a key
knowledge area [4]. Three years ago the University of
California, Riverside introduced an elective course called
"CS 100: Software Construction" in support of this goal.
Of course, taking a course in software engineering would
be extremely beneficial as well, but students who already
have an interest in the area typically take this. A course on
software construction, which focuses more on individual
programming skills and acumen, could be more broadly
beneficial.

Programming skills should be considered as essential
to a software engineer researcher's success as a mastery
of technical communication.

4.2 Require Empirical Evidence of Efflcacy

The second recommendation is to move towards
requiring empirical evidence of the efficacy of the ROTS
software solution. There is a growing awareness of the
need to employ evidence-based arguments to support the

CMU/SEI-2003-SR-004

practices of software engineering, rather than arguments
based upon advocacy [2]. An objective measure of the
efficacy of a ROTS software solution would facilitate
adoption by providing an independent predictor of its
likely benefits.

One of the paradoxes of software engineering is that,
although it extensively employs widely-accepted concepts
and practices that are drawn from experience and
observation, we rarely possess any solid audit trail that
can provide a validation of these ideas and that could link
theory and concepts to observed practices. By requiring
evidence of ROTS efficacy, problems related to both
technology adoption and the maturity of the software
engineering field would be partially addressed.

4.3 Change the Academic Reward Structure

The third recommendation is related to the typical
academic reward structure. One of the prime currencies
for most academics is publication. Once a paper
describing (often preliminary) results from a project has
appeared in a public forum, such as a conference
proceeding or journal paper, there is often little incentive
to continue the work. Quite the contrary in fact;
subsequent publications on the same topic are often
viewed as derivative work by reviewers and hence may
not get into print.

This creates a clear disincentive for the principal
investigator and the rest of the team to continue working
on the project. Unless the goal was specifically
technology transition to an industrial partner, in many
cases this part of the project will be declared complete
and a new line of investigation will begin. For software
engineering research and ROTS software, this
phenomenon is very unfortunate, since it perpetuates the
adoption challenges outlined in Section 3.

One way to address this problem would be to reward
researchers who take ROTS software from the proof-of-
concept stage to something that is nearing commercial
viability. It is well known that such an endeavor is both
academically challenging and (as outlined in Section 1)
potentially very rewarding. To see this recommendation
come to fhiition, the community as a whole would have to
recognize the importance of this "last mile" of software
engineering research.

5. Summary

ROTS software holds much promise, but only if it is
adopted by people other than its original developers. The
diffusion of technology remains more of an art than a

predictable process, but is it essential to move the field
forward. Nowhere is this truer than in applied software
engineering research, where the adoption of results by the
community-at-large should be regarded as a necessary but
not sufficient sign of success.

Our own experience with an object-oriented
framework for developing routines in the domain of
optimizing compilers suggests that there are several
possible areas for improvement. As outlined in Section 3,
these were understandability, robustness, and
completeness of the ROTS application. There is no easy
answer to these challenges, but the recommendations
suggested in Section 4 begin to address them.

References

[1] Austem, M. Generic Programming and the STL: Using and
Extending the C++ Standard Template Library. Addison-
Wesley, 1998.

Budgen, D.; Hoffhagle, G.; Muller, M.; Robert, F.; Sellami,
A.; and Tilley, S. "Empirical Software Engineering: A
Roadmap." To appear in Proceedings of the l(f
International Conference on Software Technology and
Engineering Practice (STEP 2002: Oct. 6-8, 2002;
Montreal, Canada). IEEE Computer Society Press, 2003.
Christensen, C. The Innovator's Dilemma. Harvard
Business School Press, 1997.
IEEE Computer Society. "Computing Curricula for
Software Engineering". Online at
http://sites.computer.org/ccse/.
Moore, G. Crossing the Chasm. HaiperBusiness, 1991.
SEI Technology Adoption program. Online at
http://www.sei.cmu.edu/adopting/adopting.html.
SEI Technology Transition Practices group. "Fundamentals
of Transition Mechanisms". October 2002. Online at
http://www.sei.cmu.edu/ttp/presentations/ftmdamentals-
transition/.

[2]

[3]

[4]

[5]

[6]

[7]

[8] SEI Technology Transition Practices group. Online at
http://www.sei.cmu.edu/ttp/.

[9] Sirko, E. "RIF: A Language and Toolkit Supporting
Research and Education in Optimizing Compilers."
Master's Thesis, Department of Computer Science,
University of California, Riverside. September 1999.

[10] The Economist. "Innovation's Golden Goose." The
Economist Technology Quarterly, December 14, 2002.

[11] Tilley, S. and Huang, S. "On the Emergence of the
Renaissance Software Engineer." Proceedings of the 1"
International Workshop on Web Site Evolution (WSE'99:
Atlanta, GA: October 5,1999).

CMU/SEI-2003-SR-004

Tool Adoption: A Software Developer's Perspective

Johannes Martin
Johannes Gutenberg-Universitat Mainz

Psychologisches Institut
Mainz, Germany

jmartin @notamusica.com

Abstract

Much of the work in adoption centric software engineer-
ing hasfocussed on the aspect of presenting and manipulat-
ing documentation and information on source code of soft-
ware systems. These are tasks that are usually done by man-
agers and system designers, and thus an integration into the
office tools those people use is very appropriate.

Programmers usually use quite a different set of tools, ei-
ther integrated development environments or powerful text
editors and command line tools. While managers and sys-
tem designers are satisfied with an infrequently updated
high-level view of their software systems, programmers
need exact information on the details of a system in its cur-
rent state.

This position paper surveys a number of current software
engineering tools with respect to their support for program-
mers' requirements to formulate properties that ease the
adoption of software engineering tools by programmers.

1. Introduction

The main task of many programmers is to respond to
various features requests and problem reports. While high-
level design documents may help in narrowing down the
sources of a problem or the parts of the code affected by
a featme request, that information is usually not sufficient
to solve these problems. They need an intimate knowledge
of the source code they are working with, down to where a
particular function or variable is used. Even though expert
programmers can remember a lot of this information, they
require ways to lookup information in parts of the software
system that they are unfamiliar with or that have recently
changed.

Software reengineering tools have addressed the prob-
lem of discovering properties of source code for some time
already. Recently, development tools have also tried to sup-
port programmers in this respect. In the following section.

we survey a number of these tools and consider their suc-
cess in term of their adoption by programmers.

2. Tool survey

2.1. Editor & search tool

Traditionally, programmers have used more or less so-
phisticated text editors to write and maintain source code.
These editors usually offer simple search and replace tools
that progranMners use to locate definitions and references of
source code artifacts. External search tools such as grep are
used to locate artifacts and their relationships in source code
distributed over several files and directories.

Even though these tools are much less sophisticated than
integrated development environments and software engi-
neering tools, they have some big advantages of those, for
example their level of availability. In the rare case that they
are not preinstalled on a system, popular editors such as v»
and emacs and search tools {grep) are easy to install and
available on virtually all hardware and software platforms.
As they have a very limited range of basic functionaUty,
they are easy to master and fast, and therefore work well on
typical low-end machines available to programmers. An-
other big advantage is that they always present the current
state of the system, as they work directly on the source code
of the system rather than a on a repository of artifacts ex-
tracted from a more or less recent version of the source
code.

The disadvantage of the search tools is their imprecise-
ness. When searching for strings of matching a variable or
function name, they turn up all source code artifacts that
match that name. The programmer then has to filter the
search results in order to eUminate these false positives. De-
pending on the size of the system, this might be a difficult
and erromeous task.

CMU/SEI-2003-SR-004

2.2. Cross reference tools

In the early days of programming when searching in pro-
gram source code was difficult, programmers often used
printed cross references of source code artifacts to help
in understanding and debugging their program code. As
searching became easier, these cross references became ne-
glected. With the increasing size and complexity of modem
software systems and thus the high number of false posi-
tives obtained using search tools such as grep, programmers
start to recognise the need for such cross references again.
They no longer appear on paper but in the form of source
code annotated with hyperlinks in a web browser. Users
of these systems can navigate through the source code and
find definitions and uses of source code artifacts. The more
precisely a cross referencing tool parses the source code,
the less likely it is to turn up false positives in a search for
source code artifacts. On the other hand, a precise tools will
likely fail to analyse source code that contains syntax errors.

The Rigi reverse engineering environment comes with a
set of parsers and tools that can be used to generate a precise
hyperlinked version of source code [8,11]. LXR is another
such project, originally intended for cross referencing the
Linux kernel sources [4]. It has a less precise parser and can
therefore handle a wider variety of source code dialects and
even some errors in the code. It is now used for a number
of open source projects in addition to the Linux kernel such
as Mozilla and KDE.

Some effort and expertise is required to install these
tools. Since they work on an intermediate repository of
source code artifacts that needs to be recreated after the
source code has changed, they do not always reflect the cur-
rent state of the source code. So, even if they parse the
source code precisely, they may report false positives or fail
to report some results. Depending on the amount of change
a system undergoes and the time it takes to update the inter-
mediate repository, this might pose a problem. An advan-
tage of these systems it they run entirely an a host system,
the programmer only needs a standard web browser on his
own system. While a programmer can thus read and nav-
igate through the source code in his web browser, he has
to switch back to his regular progranmiing environment to
continue editing the source code, requiring him to locate the
source code already displayed in the web browser in his ed-
itor. A tighter integration of browsing and editing would be
helpful.

23. Integrated development environments

Integrated development environments (IDE) combine
editors with other tools programmers frequently use. Tra-
ditionally httle more than a wrapper for these tools, modem
IDEs integrate these tools into the editor and support ad-

vanced features such as code browsing with automated and
precise cross-referencing using an internal and proprietary
repository [2,9,10,5]. These advanced features are easy to
use for programmers already familiar with these IDEs, and
therefore adoption is almost guaranteed.

A big problem of these IDEs, however, is their lack of
scaleability. As they rely on building an internal repository,
they require all or a large part of the code to be compiled
on the programmer's machine. For industrial size applica-
tions, this is often not possible. As these IDEs sometimes
try to offer every imaginable gadget, they become bloated,
requiring more RAM and CPU time an average program-
mer can offer on her workstation. Often they are limited
to a certain programming language and operating system,
making them even more difficult to use in existing software
projects. Also, programmers who are used to a different
programming environment might be reluctant to learn a new
environment.

3. Goals

We have identified a number of properties that should
ease the adoption of software engineering tools by program-
mers. We will discuss these in the following sections of this
paper.

3.1. Correctness of the results

A software engineering tool must respond to a query by
returning all appropriate responses. Programmers are used
to filtering false positives from search result, so a small
number of false positives within the search result is accept-
able. There must not be any false negatives, since program-
mers will not accept a tool that will require them to verify
results externally.

The tool must reflect the current state of the source code
as much as possible. If it is not possible to update the inter-
nal repository of the tool with every change of the source
code, the programmer should be able to force an update
when needed. A small change in the source code should
only require a minor update operation in the repository. It
is usually acceptable to a programmer if the repository up-
date takes about as long as a recompilation of the changed
parts of the program. Ideally, the repository update should
be triggered automatically whenever a compilation is per-
formed.

This requirement is met by most modem IDEs, unless
a software product exists in different configurations. IDEs
usually consider only one particular configuration of a pro-
gram as they depend on their integrated compiler to popu-
late their repository. The problem of parsing source code in-
dependently of its configuration needs to be addressed bet-

CMU/SEI-2003-SR-004

ter in IDEs. However, it is a problem that is limited mostly
to the C and C++ programming languages.

3.2. Responsiveness

Unless a software engineering tool provides a significant
advantage over her current tools, a programmer will not use
it. She will evaluate the tool by how it helps her in complet-
ing her tasks on time. For example, if a search tool requires
considerably longer to present a search result than it would
take the programmer to filter the output of a search using
grep, she will revert to using the faster grep over the more
exact tool.

33. Version control

Programmers frequently have to work on different ver-
sions of a program. They might have to correct a problem
in the released version of a product one day and implement
a new feature in the development version of the product the
next day. Most software engineering tools do not support
versioning natively. The internal repository of the tool will
have to be recreated in order to get an accurate description
of any one version of a software system. Research on how
to store historical data on source code in repositories needs
to be done.

3.4. Flexibility

Most current software engineering tools come with a
proprietary user interface and therefore require their users
to familiarise themselves with that interface. The develop-
ers of these tools often overlook that fact that every pro-
grammer has a different style of accomplishing his work.
While some prefer spartanic environments and are happy
with a simple editor, others prefer a windowed environment
and a colourful IDE. Software engineering tools should of-
fer different frontends to suit a variety of usage style. One
programmer should be able to query a repository using a
command line client, while another programmer should be
able to perform the same query from within his IDE. The
command line client interface could further be modeled af-
ter grep to help the programmer in the transition, just as
the IDE's query dialog closely resemble the IDE's regular
search dialog. Most importantly, the software engineering
tools need to be available on the programmer's platform of
choice.

4. Conclusion

In this paper, we siu^feyed and categorised tools used by
programmers and formulated some criteria for the adoption
of software engineering tools by programmers. While some

of these tools, namely IDEs, are already being adopted by
progranuners quite well, they are often limited to small or
medium size projects that can be compiled within the pro-
grammers' development environment. Those tools that can
handle larger volumes of source code do not yet integrate
well with common development environments. Many of
the currently available tools do not offer support for version
control and limit the programmer in her choice of program-
ming environment.

In the recent past, many technologies and tools have been
developed that can help solve some of the problems as-
sessed in this paper. A common exchange format for soft-
ware artifacts has been defined, and a number of parsers for
popular programming languages that use this exchange for-
mat are now available on various platforms [1, 6, 3]. In the
Ovid Project, we collect these tools to integrate them ac-
cording to the goals we have formulated [7]. The resulting
tool sets will help in everyday software maintenance, soft-
ware reengineering, refactoring, and language migration.

References

[1] GXL Home Page. http://www.gupro.de/GXL, November
2001.

[2] Eclipse.org. Eclipse Web Site, http://www.eclipse.org.
[3] R. Ferenc, F. Magyar, A. Besz6des, A. Kiss, and M. Tarki-

ainen. Columbus — Tool for Reverse Engineering
Large Object Oriented Software Systems. In Proceed-
ings ofSPLST2001, pages 16-27, Szeged, Hungary, June
2001. http://ferenc.rgai.hu/research/ferencr.columbus.pdf,
November 2001.

[4] A. G. Gleditsch and P. K. Gjermshus. Cross-Referencing
Linux, http://lxr.sourceforge.net/.

[5] M. Karasick. The Architecture of Montana: An Open and
Extensible Programming Environment with an Incremental
C++ Compiler. In Proceedings of the Conference on Foun-
dations of Software Engineering, Orlando, FL, Nov. 1998.

[6] A. J. Malton. CPPX Home Page.
http://www.swag.uwaterloo.ca/'cppx/, November 2001.

[7] J. Martin. The Ovid Project, http://ovid.tigris.org/.
[8] H. A. MuUer and K. Klashinsky. Rigi — A system for

programming-in-the-large. In Proceedings of the 10th Inter-
national Conference on Software Engineering, pages 80-86,
1988.

[9] L. R. Nackman. CodeStore and Incremental C++. Dr.
Dobb's Journal, pages 92-95, Dec. 1997.

[10] D. Soroker, M. Karasick, J. Barton, and D. Sfreeter. Ex-
tension Mechanisms in Montana. In Proceedings of the 8th
IEEE Israeli Conference on Computer Systems and Software
Engineering, Herzliya, Israel, June 1997. IEEE Computer
Society Press.

[11] University of Victoria. Rigi Web Server.
http://www.rigi.csc.uvic.ca, June 2001.

CMU/SEI-2003-SR-004

The Need for Adoption Issues in Enterprise Integration

Dennis Smith and Liam O'Brien
Software Engineering Institute

Camegie Mellon University
4500 Fifth Avenue

Pittsburgh, PA 15213 USA
+1 412 268 7727

{lob, dbsl@sei.cmu.edu

Abstract

The ability to provide integration between business
functions that may be supported across multiple
applications is a critical need for modem organizations.
Although significant technical issues need to be addressed
to address the issue, many failures have resulted from not
adequately addressing adoption issues. Thjs paper identifies
adoption issues that need to be addressed in effectively
addressing the enterprise integration problem.

1 Introduction

Enterprise Integration has the goal of providing timely and
accurate exchange of consistent information between
business functions to support strategic and tactical business
goals in a manner that appears to be seamless. The initial
automated applications that were developed during the
1950s and 1960s tended to focus at the level of an
organizational unit. Over time, the scope of requirements
has increased, along with an unfortunate tendency for the
information systems to become brittle, difficult to manage,
and hard to understand. This in turns led to the inability of
users to integrate critical new applications into the existing
solution set, or to mix-and-match the capabilities provided
by the systems to solve new problems.

As automated systems became more pervasive within
organizations, and as organizations reorganized, split or
were acquired and reacquired over the years, the need for
integration between applications over a broad enterprise
has become increasingly important, and in fact is often a
critical success factor for the survival of the enterprise.

Rather than acting as independent programs, integrated
systems can provide better business value by sharing data,
communicating results, and improving overall

functionality. Integration of information systems is
expensive and time consuming. Between 20% and 40% of
labor costs can be traced to the storage and reconciliation of
data. In addition, 70% of code in corporate software
systems is dedicated to moving data from system to system
[1]. The challenge has always been how to realize this goal.

This paper focuses on the adoption issues that need to be
addressed in enterprise integration. Section 2 outlines some
of the highly publicized failures that have been experienced
in enterprise integration projects. Section 3 identifies
adoption problems that have been experienced in
implementing Enterprise Resource Planning (ERP)
solutions. Section 4 summarizes organizational problems.
Section 5 identifies migration planning issues that need to
be addressed. Section 6 discusses the adoption issues that
need to be resolved to address the problems.

2 Adoption Problems
Enterprise Integration

in Addressing

Although enterprise integration is critical for achieving
organizational goals, the track record of implementations
has been spotty. A number of publicly documented failures
[2] include:

• Hershey Foods Corp., $115 million SAP
installation to replace "scores of legacy
programs running everything from inventory
to order processing to human resources";
during busiest season of the year (Halloween),
"Hershey warehouses piled up with
undelivered Kisses, Twizzlers and peanut-
butter cups. The upshot: third-quarter sales
dropped by a staggering 12.4 percent... and
earnings were off 18.6 percent."

• Whirlpool, Dow Chemical, Boeing, Dell
Computer, Apple Computer and Waste

CMU/SEI-2003-SR-004 10

Management experienced similar
disappointment.

• W. L. Gore & Associates sued Deloite
Consulting for breach of contract, fraud and
negligence to recover $3.5 million in fees;
also names PeopleSoft for certifying
incompetent party.

• SunLite Casual Furniture sued Deloitte in
Arkansas for maliciously "indoctrinating in
SunLite a total dependency on D&T that
D&T hoped would result in lucrative fees for
years to come.

• FoxMeyer Drugs blames "botched
implementation of SAP's F/3 software for
pushing it into bankruptcy back in 1996."
Suing Andersen and SAP for $500 million,
also only spending $30 million for the project.

Two analyses [3, 4] attribute the reasons for failures to 7
adoption related reasons:

• Miscommunication

• Hazy goals

• Poor project management

• Scope creep

• Modifying ERP software prior to pilot testing

• inadequate training

• insufficient implementation support

3 Adoption Problems and Enterprise
Resource Planning (ERP) Implementations

disasters in ERP implementations have occurred. Often
these problems occur because of mismatches between the
COTS ERP products and the business practices of the
target organization. A decision to implement an ERP
requires careful analysis of the following factors:

• an understanding of the gap between the
underlying object, data, or functional models of
the ERP solution and those currently supported by
an organization's legacy systems (often substantial
effort is required to customize the ERP or change
the organizational processes to match those of the
ERP)

• an understanding of the role of data, control and
presentation integration in making ERP solutions
more effective

• an understanding of specific ways in which the
ERP will interface with legacy systems, other
ERPs, and future development efforts

• an understanding of migration issues, such as user
training, data migration, phasing in of the ERPs,
and phasing out of the legacy systems

• development of realistic cost and schedule
estimates reflecting realistic expectations

A number of open issues concerning the adoption of ERP
products need to be addressed. These include:

• To what extent is it possible to share services
between different ERPs?

• To what extent is it possible to use a common
framework to support different ERPs?

• To what extent can the user interface be separated
from the core fiinctionality of ERPs?

• If core functionality can be separated from user
interfaces, how do new versions of the ERPs
interact with the new user interface?

Enterprise resource planning (ERPs) solutions are
essentially COTS products that provide support for
standard enterprise needs in such areas as finance, human
resources, and logistics. A number of vendors provide ERP
solutions, including PeopleSoft, SAP, Baan, and Oracle.
ERPs are popular because they offer the promise of
enabling an organization to leverage the research and
development efforts of the ERP vendors. Functional areas
such as taxes, purchasing, and human resource
management have a significant amount of commonality
between organizations, and there are strong arguments for
purchasing a ready solution rather than developing an
application from scratch.

ERPs can make good sense for an organization. However,
the benefits are far from automatic. In fact, a number of

4 Organizational Issues

Organizational issues in enterprise integration are
significant. An enterprise-integration effort affects an entire
organization, and it is necessary to have long-term
management support and financial commitment, realistic
plans, and systematic migration planning.

The outstanding organizational issues and problems
include:

• a need for an effective methodology for enterprise
integration including a clear distinction between the
scoping that an enterprise architecture provides and
the detailed blueprint for development that a software

CMU/SEI-2003-SR-004 11

architecture for an application provides. This includes
clear guidelines for the deferral of details from the
enterprise architecture to the software architecture

lack of organization-wide solutions to integration
problem (integration solutions tend to be local)

the identification of interfaces from existing systems
and identification of side effects

need for clear guidance for management decision
making

A need to recognize that integration cannot be
mandated, legislated or assumed. It needs to be
nurtured. There is often a lack of understanding of the
cost of integration at upper management levels. Cost,
risks, and potential harm need to be fed back to the
upper levels.

A common failure to clearly define the scope of an
"enterprise" to integrate. This can result in a shifting
definition of the enterprise, overlapping
organizations, and turf battles. There is a great deal of
pressure to define an enterprise too broadly, and thus
to make it difficult to partition the problem into
manageable entities.

A need to recognize that any technology solution
should derive from business drivers using technology
as an enabler, as opposed to viewing technology as a
primary driver. Many failures result from a
"technology first" or solution first" approach, and
from the failure to adequately address organizational
and cultural issues.

There is often a failure to take a long term view. Some
of the factors include the practice of rapid rotation of
leadership, budget instabilities, and failure to plan for
long-term maintenance and upgrading costs.

A need to consider the total cost of ownership for an
Enterprise Resource Planning (ERP) solution. The
total cost includes not only the ERP software cost but
the other associated costs including integration,
training, system analysis, customization, maintenance,
etc. The associated costs may be of the order of
magnitude of 5 to 7 that of the software cost.

There can be a tension between the requirement of
developing an enterprise architecture and the
pragmatic demands of individual ERP/COTS
solutions, leading to the impression that technology is
the solution.

When making a decision on an ERP, low level
analysis of the details needs to be done to determine a

match in some cases changing existing business
processes to match those of an ERP may be the most
cost-effective approach. However, this needs to be
done with careful analysis which unfortunately does
not occur often.

There is a strong need for a coordinated migration
plan for the existing systems to move towards
integration

5 Disciplined Migration Planning

Enterprise integration can also be considered to be a
complex migration problem. Although the initial step of
developing an enterprise integration plan establishes a
blueprint for the final goal, in general these efforts have not
developed adequate plans. In general there is an
assumption, which may be unrealistic, that legacy systems
will be replaced over a period of time. As a result, such
efforts have sometimes been big bang approaches - without
substantial intermediate deliverables. There is a need to
have a greater focus on migration plans fi-om current legacy
systems and to cleariy relate the perceptions and needs of
end users to the long-range plans that are developed.

Bergey, O'Brien and Smith [5] have addressed the issue of
migration planning, and recommend addressing a set of
issues, including:

• Identifying all relevant stakeholders and involving
them throughout the project

• Ensuring there is a common understanding of the
problem to be solved

• Determining that the initiative is commensurate
with the maturity of the organization's software
practices

• Define all aspects of the software architecture and
its constraints on existing and new systems

• Perform a thorough analysis of legacy systems,
their interfaces, and changes required

• Break the problem into bite size chunks that are
phased in incrementally

• Do a pilot effort before committing to a large scale
plan

CMU/SEI-2003-SR-004 12

6 Conclusion: Bridging the Gap between
Need and Reality

A number of recent trends provide a foundation that can
lead to future success. Middleware technologies have
advanced rapidly over the past 10 years, and these enable
more options for integration than had been previously
available. The maturing of markup languages such as XML
enable more effective integration, particularly between
structured data, such as data from databases, and non-
structured data, such as email. The Web can serve as a
common front end for integrating a variety of applications,
and it can enable effective presentation integration. Web
services are maturing as an important mechanism for
integration of legacy systems, new applications and ERPs.
The emergence of enterprise portals over the past several
years demonstrates the strong interest and need for
effective presentation integration. In addition, ERP
applications, while still displaying significant problems,
have become more mature, and their interfaces are better
able to share data with other applications.

However, despite progress, the overall status of the field is
immature. There is a significant gap between the desired
state and present reality. In order to bridge this gap the
following critical issues need to be addressed:

• Determining an effective scope for an integration

effort as well as the development of a proven method

for developing an effective scope for integration

efforts. Currently, many efforts flounder because they

fail to define an effective scope. Often current efforts

develop very ambitious scopes that are difficult, or

impossible to successfully implement.

• Aligning the integration effort with the mission and
high level goals of the enterprise, and developing
commitment and sponsorship at the appropriate levels

• Understanding the role of adoption issues in
implementing enterprise integration efforts.

• Understanding the appropriate role of an enterprise
architecture, and its relationship to a software
architecture

• Understanding appropriate role of frameworks and
standards

Addressing the technology issues of data integration,
control integration and presentation integration

Decision rules for making choices on the types of
technology that are most appropriate for specific types
of efforts. Although many technology solutions are
available, there are not easily accessible guidelines for
when to use different types of solutions.

Determining the type of technology that is most
appropriate for different types of programs

Understanding when ERP solutions are appropriate,
and when they are not appropriate

Breaking down an overall project into realistic parts

Developing realistic sets of plans for the effort

Addressing issues of contracting, funding and
oversight management within government
organizations

Migration and integration of legacy systems

References

1. Zachman, J. "Enterprise Architecture: The Issue of the
Century." Database Programming and Design, March,
1997.

2. Osterland, A. ERP Disasters. CFO, The Magazine for
Senior Financial Executives, Jan. 2000.

3. Nash, K. "Companies Don't Learn From Previous IT
Snafus", Computerworld, October, 2000.

4. McAlary, S. 'Three Pitfalls in ERP Implementations",
The Managers Publication of Data Solutions, March,
2000.

5. Bergey, J. O'Brien, W. and Smith, D. DoD Software
Migration Planning. Carnegie Mellon University,
Software Engineering Institute, CMU/SEI-2001-TN-
012.

CMU/SEI-2003-SR-004 13

Adoption-Centric Knowledge Engineering

Neil A. Ernst
Department of Computer Science, University of Victoria
PO Box 3055, STNCSC, Victoria, BC, Canada V8W3P6

nemst @ cs. uvic. ca

Abstract

Cognitive issues in software engineering are relatively
well-documented and well-understood when compared
with the domain of knowledge engineering. Current
knowledge engineering tools often feature high barriers
to the use and re-use of both the tool and its products. An
adoption-centric knowledge engineering approach is
suggested to deal with these issues. Adoption-centric
knowledge engineering is the design of knowledge
engineering tools and knowledge engineering processes
to ensure the widest possible adoption. In turn, wide
adoption will benefit the projects that choose to focus on
it by increasing the user-base. One way to make a tool
more adoption-centric is to provide increased cognitive
support to the potential user

1. Introduction

The introduction to a well-known project site for
adoption-centric software engineering (ACSE) [1] makes
the case for ACSE as follows: "Research tools in software
engineering often fail to be adopted and deployed in
industry." This is equally true of tools in the discipline of
knowledge engineering. User-centered software
engineering has seen a wealth of research compared to
similar projects in knowledge engineering. This research
has produced a body of work which describes theories for
how software engineering is practiced, although by no
means an exhaustive amount. Knowledge engineering, the
design of knowledge-based systems, be they theorem
provers, expert systems, or intelligent agents, is not as
well documented. I am not referring here to the logical
foundations of expert systems, as this is a much-studied
area; see [2] or [3] for examples of seminal knowledge-
engineering design projects. These papers document in
detail the mechanics of designing a knowledge-based
system. Unfortunately, the knowledge acquisition field
has traditionally ignored the user perspective in these
areas. Practitioners have been more concerned with
designing a system to solve a problem - say, to diagnose a

specific medical condition - than with the actual methods
used to create the system. This is well illustrated in [3];
namely, that few efforts in the field are focused on
developing tools for users, being more concerned with
knowledge modelling and knowledge elicitation, often at
the expense of end-user usability concerns.

We should be concerned with end-user adoption and
usability (where the end-user, in this case, is the system
designer) because developing good applications is directly
related to how simple the chosen tool is to use: the tool
should be unobtrusive, a fact shown in certain software
engineering studies [4]. Knowledge engineering needs a
similar focus. Adoption-centric knowledge engineering
(ACKE) would be focused, like its sibling ACSE, on
delivering tools that leverage existing user knowledge
rather than requiring learning yet another new product;
this can provide a significant advantage to developers. In
this position paper I first discuss the background of
knowledge engineering, particularly with respect to
software engineering; section 3 illustrates a typical tool
for adding to cognitive understanding of large knowledge
bases; finally, section 4 argues that adoption-centric
knowledge engineering is of vital importance to many
projects.

2. Background

This section describes the fundamental ideas of
knowledge engineering and looks at the intersections of
both knowledge engineering and software engineering. I
have found that empirical studies of cognitive support for
knowledge engineering are lacking, and seek to leverage
comparable studies in software engineering.

2.1 Knowledge Engineering

There has been an increased focus in recent years on
knowledge engineering, particularly in response to the
Semantic Web initiative of the World Wide Web
Consortium (W3C) [5], [6]. The Semantic Web initiative
is concerned with the "abstract representation of data on

CMU/SEI-2003-SR-004 14

the World Wide Web" [7] such that additional, machine-
comprehensible metadata might be created. The
formation of global standards such as the Resource
Description Framework (RDF) [8], the Web Ontology
Language (OWL) [9], and XML, combined with the
power of distributed application development via the
Internet, has led to renewed interest in knowledge-based
systems, to perform any number of tasks, such as making
inferences on web site metadata to intelligent e-commerce
shopping agents [10].

The term knowledge engineering refers to the design
and construction of knowledge-based systems, much like
software engineering refers to the design and construction
of software systems. Traditional knowledge engineering
has followed a number of processes, which typically
contain some of the following elements [11] (figure 1):

a) The knowledge base design phase. This is a
model of the proposed system (for example, a
medical protocol for cancer treatment); this
phase is akin to a software modelling phase
where requirements are gathered but no actual
code is written;

b) the knowledge acquisition and knowledge
elicitation phase, in which domain experts are
interviewed by knowledge engineers and data
instances are created;

c) the knowledge entry phase, in which the
knowledge engineer enters the newly acquired
data into the knowledge base;

d) the knowledge maintenance phase, where the
system is updated to reflect new facts and rules.

KB:
Eqicrt

^

ns^

r:\:r:-:p;rr^^
Kno^Bdge
Elidutira : Leaniig :

KB 1
RefinementJ

; Eseptian
': HutMlKng

'-_JKB_I:::)
Fouidaticxi
knovleiige

-—.KB—-
Conqilele

and correct
•noogh

Figure 1 - The knowledge acquisition process
([12])

This process is somewhat non-linear, as indicated by
the grey arrows. Knowledge engineering, like software
engineering, can be very iterative; as the system is tested
and faults are found, the model may be changed or the
data instances modified.

In knowledge engineering there is a third party
involved in a significant way: the domain experts are a

crucial and significant part of the knowledge engineering
process. Since the domains are so complicated, and the
goals so high-level, a second expert is often needed to
explain this, particularly where the knowledge engineer
has no domain knowledge. Furthermore, the modelling of
knowledge-based systems often takes place at the
knowledge level [13], rather than the symbol level; this
higher degree of abstraction leads to problems in deciding
exactly what the system is capturing and modelling.

Knowledge engineering tools are systems designed to
automate some aspect of this complex process. They
range from tools which help with the design of
knowledge-based systems [14] and the elicitation of
knowledge [15], to tools which provide a mechanism to
maintain and upgrade the knowledge base ([16], [17]).
There are two broad classes of users for these tools. One
is an end-user, for instance, the doctor or engineer
accessing a knowledge-base for decision support with
some task. The second category, with which my research
is most concerned, is the system engineer, either the
knowledge engineer who created the system, or a
maintenance engineer who seeks to ensure accuracy,
speed, and other performance measures as defined by the
application specification. This class of user has obvious
and natural equivalencies with his software engineering
counterpart, for example, a maintenance programmer.
Both users require cognitive support for understanding the
model for which they are responsible. To further narrow
the types of use-case we seek to model, I have wilfully
ignored the cases where we seek to enter knowledge
(knowledge acquisition), focusing instead on maintaining
knowledge-bases. This is akin to the software
maintenance and program comprehension tasks. One of
the big difficulties in this area is the lack of
comprehensive research in the field. While there is a fair
amount of work in the areas of knowledge engineering
methodology, such as ensuring accuracy and performance,
comparatively little has been done on knowledge base
maintenance, and there are no theories on cognitive
support for knowledge base engineering, unlike some
work in software engineering [18].

2.2 Knowledge Engineering and Software
Engineering: Perspectives

What are the differences and similarities between
knowledge engineering and software engineering? I
beUeve there are two perspectives to take on this
relationship; one is to examine knowledge-based software
engineering, the other to consider software-centred
knowledge engineering. Software engineering can often
be said to be knowledge-centric, in that it seeks to
construct a knowledge-based model of a particular
application domain. This would apply to projects which
leverage the knowledge of end-users to support decisions

CMU/SEI-2003-SR-004 15

they might make at a later date. Such systems often
contain a large degree of knowledge, such as the forest
stand lifecycle data of the Sortie project [19], within data
structures of the program, whatever the programming
language.

Clearly, the greatest overlap occurs in languages such
as Prolog, which is typically used by software engineers to
construct knowledge-based systems. We describe these
systems as software-centered, because their functionality
arises from a software-based tool or solution. In this
perspective, software tools are used to construct a symbol-
level representation of the knowledge-level model.

Other systems exist outside these perspectives. There
are software projects, such as an operating system, which
make less use of specific knowledge from end-users.
Requirements in this type of project are largely functional
and quantitative. The Linux project, for example, is not as
concerned with capturing user-specific information as it is
with providing certain functionality, such as USB support.
The inverse of this is the knowledge base which uses no or
few software engineering techniques to design the tool.
We might characterize knowledge bases which use
domain-specific tools in this manner. An example of this
is a controlled terminology which is used to standardize
the vocabulary of a particular domain. On their own,
these terminologies use no specific software engineering
approaches; however, they are often combined with other
tools, such as Internet application servers, to deliver the
product.

3. Our Approach

Our research group is developing a tool called
Jambalaya [17]. Jambalaya is the integration of a
software understanding tool, SHriMP, with a knowledge
engineering tool, Prot6g6 [20], to attempt to provide some
cognitive support for developers of software-centric
knowledge bases. We have recently completed a user
questionnaire on how people might use the visualizations
of Jambalaya for enhancing their comprehension of the
(often-complex) knowledge structures in Prot6g6, in order
to provide a better understanding of these issues: a paper
describing these results is in progress. Amongst the things
that emerged were:

• the large number of domains being worked on;
• the different sizes of ontologies which users

manage;
• the relative lack of usable visual representations of

the knowledge structures.
These points seem to indicate that a major challenge in

both designing tools for knowledge engineering and,
perhaps more importantly, increasing the adoption of
those tools, will be in bridging the number of domains and
approaches which exist. The reason better cognitive

support is needed remains relatively unclear except on an
ad-hoc level, and needs to be addressed through user
evaluations and interviews. Some preliminary work,
however, seems to illustrate the need fairly clearly.
Blythe et al. [21], for example, identifies some typical
concerns that users may have when adding new
knowledge to an intelligent system:

• Users do not know where to start and where to go
next;

• Users do not know if they are adding the right
things;

• Users often get lost as it takes several steps to add
new knowledge.

Our goal is to attempt to address some of these concerns
by providing enhanced cognitive support for developers in
understanding the nature of the knowledge-base they are
maintaining. For example, Jambalaya provides a series of
different graph layout algorithms to allow users to
maintain different perspectives on the model. One area of
research of great interest is on what techniques knowledge
engineers use to understand the model. For example,
research in software engineering indicates several
strategies for program comprehension, such as top-down,
bottom-up, knowledge-based, as-needed, and integrative
[22]. We are interested in exploring whether such
techniques translate readily to the knowledge engineering
domain.

4. The Need for Adoption-Centric Knowledge
Engineering

Our tool is currently integrated with a reasonably
popular knowledge engineering framework. Protege has
fairiy widespread support, but is by no means a universal
tool. Much like the popular software development
environment Eclipse (eclipse.org), Prot6g6 has a number
of adoption-centric advantages, including an extensible
plug-in architecture, an open-source licence, and a lengthy
history in the community. Nevertheless, Protdge has
limitations in specific areas. For example, Prot6g6 uses a
frame-based knowledge representation, which is only one
of many formalisms, each of which has its own
advantages. The frame-based representation is somewhat
similar to object-oriented software engineering paradigms,
and Prot6g6 uses one version of it, much like Eclipse
offers Java integration. Some large applications, such as
the U.S. National Cancer Institute's controlled
terminology, prefer instead to use different
representations, for a variety of reasons, just as other
projects may use pure first-order logic or variants thereof.
The particular formalism a tool uses may affect the type of
cognitive assistance required: for example, in a frame-
based system like Prot6g6, a hierarchical object-centric
view may be appropriate; in a first-order logic rule-based

CMU/SEI-2003-SR-004 16

expert system, a visualization of how the rules were fired
may be of most interest. ACKE tools should provide
support for the engineer, and not the formalism chosen
(just as ACSE should not differentiate between
programming languages). In other words, ACKE tools
should be flexible enough to support different and varied
environments and formalisms, as the user may require.
This may not be possible in all domains and areas of
interest, naturally; rather, what is being proposed is a user-
centered approach to the design of these tools, as much as
possible. Many current tools focus only on the semantics
of the formalism they are attempting to implement - that
is, does the tool fulfil the formal model and syntax
specification of the formalism - and not on how usable the
tool may be for developing different applications.

In particular, the Semantic Web initiative defines only
representation mechanisms and not tools to perform
knowledge engineering operations. While Prot6g6 seems
likely to be a part of Semantic Web application
development, it is unreasonable to assume that it would be
the only tool used, which illustrates the need for ACKE
tools. If a new platform for editing Semantic Web
services becomes widespread, we should not force users
who have a need for the enhanced cognitive support that
Jambalaya may offer to adopt Protege as well. Instead,
we should focus on adapting our tool to the user
requirements, rather than vice-versa. The ACSE approach
suggests that the best method for providing developers of
knowledge-based systems with tool support is to focus on
developing either simple add-ins to commonly used
platforms, or providing interfaces to those platforms.
^One approach might be to embed the tool in another
product with a larger base of users, much as we have done
with Prot6ge and SHriMP, but another example might be
to offer SHriMP-like functionality in an SVG-based web
tool. This would allow users to continue using their web
user-agent, such as Internet Explorer, with whose
functions they are very familiar, while also accessing more
complex functionality to support the creation and
browsing of sophisticated knowledge-based applications.
An interface approach might suggest developing a
standard import/export mechanism, allowing for
interoperability between tools. A relatively recent
example of this is the ability of Protege to export XMI
serializations of its models, allowing Protege users to
access a wider range of products, such as Rational Rose
[23]. The challenge for the developers of cognitive aids,
such as the SHriMP team, is to reduce the feature set and
user interface challenges of the tool to a point where the
essential features are preserved, yet the cognitive
overhead of learning the tool is still low enough to
encourage adoption. It is not sufficient to merely embed
the tool in a knowledge-engineering platform; it must still
be compelling and intuitive - in other words, it must
rapidly answer the user's question. What does this do for

me? I believe previous knowledge engineering tools,
while their formal utility may have been high, nevertheless
required a great deal of learning before they met simple
usability criteria, forcing users to learn not only new user
interfaces (Protege, for example, defines its own look and
feel, and is one of the simpler and better-designed UIs in
the area), but also to understand and leverage new syntax
and semantics. The hurdles imposed by the RDF syntax,
for example, are high enough without forcing users to
learn a complex tool as well.

5. Conclusions

A primary goal of adoption-centric software
engineering is to increase the number of users of software
engineering tools, to increase awareness of the potential
benefits these tools offer. My position is that such a focus
is equally important for knowledge engineering tools,
particularly with the emerging focus on the development
of knowledge-aware applications on the Internet. Recent
trends suggest that the divisions between software
engineering and knowledge engineering may be blurring,
and the demand for more powerful application design and
construction tools, such as Eclipse and Protdge, is
growing, whether the application is knowledge-centric or
software-centric.

If the vision of the Semantic Web is to be realized, it
will likely arise in distributed fashion, much like its
forefather the Worid Wide Web has done. To leverage
the true capabilities of the Semantic Web, we will see
increasing returns with more and more providers making
information - knowledge - available to other applications.
The vision has many other hurdles, among them privacy
and provenance, but the lack of easy to use tools is one
which should be straightforward to overcome. I propose
making ACKE a focus for new knowledge engineering
tools to support this vision.

7. References

[1] A. Weber, Adoption-Centric Software Engineering,
available at: httD://www.acse.cs.uvic.ca/. Department of
Computer Science, University of Victoria: 2003

[2] B. G. Buchanan and E. H. Shortliffe, Rule-Based Expert
Systems: The MYCIN experiments of the Stanford Heuristic
Programming Project. Reading, MA: Addison-Wesley, 1984.

[3] N. F. Noy, R. W. Fergerson, and M. A. Musen, "The
knowledge model of Protege-2000: Combining interoperability
and flexibility," in Proceedings of the 2nd International
Conference on Knowledge Engineering and Knowledge
Management (EKA W'2000), Juan-les-Pins, France, 2000.

[4] M.-A. D. Storey, K. Wong, F. Fracchia, and H. Mueller, "On
Integrating Visualization Techniques for Effective Software

CMU/SEI-2003-SR-004 17

Exploration," in Proceedings of the InfoVis '97, Phoenix, AZ,
1997.

[5] T. Bemers-Lee, M. Fischetti, and M. Dertouzos, Weaving
the Web: The Original Design and Ultimate Destiny of the
World Wide Web by its Inventor. San Francisco: Harper, 1999.

[6] N. F. Noy, M. Sintek, S. Decker, M. Crub6zy, R. W.
Fergerson, and M. A. Musen, "Creating Semantic Web Contents
with Prot€ge-2{)00," IEEE Intelligent Systems, pp. 60-72, 2001.

[7] E. Miller, R. Swick, D. Brickley, B. McBride, J. Hendler,
and G. Schreiber, W3C Semantic Web, available at:
http://www.w3.org/2001/sw/. World Wide Web Consortium:
2003

[8] F. Manola and E. Miller, RDF Primer Working Draft,
available at: http://www.w3.ore/TR/rdf-primer. World Wide
Web Consortium: 2002

[9] M. K. Smith, D. McGuiness, R. Volz, and C. Welty, Web
Ontology Language (OWL) Guide version 1.0, available at:
http://www.w3.org/TR/owl-puide. World Wide Web
Consortium: 2002

[10] T. Bemers-Lee, J. Hendler, and O. Lassila, "The Semantic
Web," in Scientific American, 2001.

[11] S. Russell and P. Norvig, Artificial Intelligence: A modem
approach. New Jersey: Prentice-Hall, Inc., 1995.

[12] G. Tecuci, Constructing and Refining Knowledge Bases: A
Collaborative Apprenticeship Multistrategy Learning Approach,
available at: http://lalab.gmu.edu/Proiects/HPKB/boston-
briefing/HPKB-Boston-index.htm#Index. Learning Agents
Laboratory, Computer Science Department, George Mason
University: 1997

[13] A. Newell, "The Knowledge Level," Journal of Artificial
Intelligence, vol. 18, 1982.

[14] Protege-2000, The Protege-2000 website, available at:
httD://proteee.stanford.edu. Stanford Medical Informatics: 2003

[15] P. Clark, J. Thompson, K. Barker, B. Porter, V. Chaudhri,
A. Rodriguez, J. Thomere, S. Mishra, Y. Gil, P. Hayes, and T.
Reichherzer, "Knowledge Entry as the Graphical Assembly of
Components," in Proceedings of the 1st International
Conference on Knowledge Capture (K-Cap '01), 2001.

[16] I. Horrocks, "FaCT and iFaCT," in Proceedings of the
International Workshop on Description Logics (DL'99), P.
Lambrix, A. Borgida, M. Lenzerini, R. Mbller, and P. Patel-
Schneider, Eds., 1999, pp. 133-135.

[17] M.-A. D. Storey, M. A. Musen, J. Silva, C. Best, N. Ernst,
R. Fergerson, and N. F. Noy, "Jambalaya: Interactive
visualization to enhance ontology authoring and knowledge
acquisition in Protege," in Proceedings of the Workshop on
Interactive Tools for Knowledge Capture, K-CAP-2001,
Victoria, B.C. Canada, 2001.

[18] A. Walenstein, Cognitive Support in Software Engineering
Tools: A Distributed Cognition Framework, Unpublished Ph.D.
thesis, Computer Science, Simon Eraser University

[19] M.-A. D. Storey, S. E. Sim, and K. Wong, "A collaborative
demonstration of reverse engineering tools," ACM SIGAPP
Applied Computing Review, vol. 10, pp. 18 - 25, 2002.

[20] N. F. Noy, R. W. Fergerson, and M. A. Musen, "The
knowledge model of Prot6g6-2000: combining interoperability
and flexibility," SMI Technical Paper.

[21] J. Blythe, J. Kim, S. Ramachandran, and Y. Gil, "An
integrated environment for knowledge acquisition," in
Proceedings of the Int. Conf. on Intelligent User Interfaces,
2001.

[22] M.-A. D. Storey, F. D. Fracchia, and H. A. Mijiler,
"Cognitive Design Elements to support the Construction of a
Mental Model During Software Exploration," Journal of
Software Systems, special issue on Program Comprehension,
vol. 44, pp. 171-185,1999.

[23] H. Knublauch, XMI Backend: Storing Protege ontologies
in XMI, available at: http://protege.stanford.edu/plugins/xmi/.
Stanford Medical Informatics: 2003

CMU/SEI-2003-SR-004 18

On the Yin and Yang of
Academic Research and Industrial Practice

Shihong Huang
Department of Computer Science
University of California, Riverside

shihong@cs.ucr.edu

Scott Tilley
Department of Computer Sciences

Florida Institute of Technology
stilley@cs.fit.edu

Zhou Zhiying
Department of Computer Science

Tsinghua University
zgzy-dcs@tsinghua.edu.en

Abstract
Transitioning results from academic research into
industrial practice should be a goal of modern software
engineering. However, technology adoption is not
something for academia alone to worry about; industry
also has an important role to play in the relationship.
Each supports one another, yet each is often in conflict
with the other at the same time. This paper looks at the
adoption problem by modeling the situation using the
ancient Chinese philosophy of Yin and Yang. Using this
model shows how academic research and industrial
practice react to one another in a continual and ever-
changing relationship that nevertheless exhibits timeless
patterns of conflict and cooperation.

Keywords: adoption, yin yang, academic research,
industrial practice

1. Introduction

The transition of academic research tools and
methodologies to industrial practice is necessary to push
science and technology forward. The maturation of
prototype into product is needed to make the research
results have an impact on the real world. For example,
effective research results from biology laboratories need
to be adopted by clinical practice in order to benefit
patients; efficient mechanical engineering designs need to
be put into factory production to improve manual labor;
and software engineering research tools and techniques
need to be adopted by industry as standard practice to
make the research more meaningful.

However, realizing this adoption is not easy. From a
software engineering point of view, to make research
tools easily adoptable by industry has unique challenges.
These include understandability of the solution (e.g.,
complex and poorly-structured source code), robustness
(e.g., an implementation that is not quite ready for prime
time), and completeness (e.g., a partial solution due to an

implicit focus on getting "just enough" done to illustrate
the feasibility of a solution) [8].

However, to thoroughly understand technology
transition issues and to increase the likelihood of adoption
of results from research by industry, a broader perspective
may be required. There is still a need to study the problem
from the academic perspective, but there is also a need to
look at the same problem from the opposite side: the
industrial perspective. Only by looking at technology
adoption in such a holistic manner will it become more
commonplace. Fortunately, there is a well-established
model that can be used to reason about modern
technology adoption: the ancient Chinese philosophy of
Yin and Yang (also known as Tai Ji).

2. The Yin and Yang Philosophy

The ancient Chinese philosophy of Yin and f^^
Yan has its origins in modeling the unchanging \f^
rules of the changing universe. The picture shown at right
of the Yin and Yang represents the cycles of the sun, the
changing of the four seasons, and the entire celestial
phenomenon. In more modem times, the Yin and Yang
symbol has become more generally applicable to
represent situations other than the natural cycles.

The essence of the Yin and Yang philosophy is in
two opposite principals, Yin and Yang, which
simultaneously oppose and rely on one another. In each
principal there is a little of the other. In fact, one principal
can give rise to the other and yet also cause the
destruction of the other.

The Yin and Yang represent all the opposite forces in
the universe [2]. Under Yang are the attributes of
maleness, the sun, creation, light, etc; under Yin are the
attributes of femaleness, the moon, completion, darkness,
etc. Each of these opposites aspect produces the other:
creation occurs under the principle of Yang, the
completion of the created thing occurs under Yin, and

CMU/SEI-2003-SR-004 19

vice versa; the end of light is darkness, when darkness
progress produce light.

The changing from Yin to Yang and from Yang to
Yin happens constantly and cyclically, like a spiral that
keeps spinning but each time reaching a level higher. This
ensures that neither Yin nor Yang dominates or decides
the other. All the phenomena we experience in our life,
such as day and night, success and failure, conquer and
defeat can be explained as the temporary dominance of
one side over the other. Given the nature of Yin and
Yang's dynamic change, each side will eventually change
into their opposite in one way or the other.

This cyclical nature of Yin and Yang, the opposing
forces of change in the universe, means several things [1].
First, all phenomena change into their opposite in an
eternal cycle of reversal. For example, birth is followed
eventually by death; economic booms are followed by
recession; Spring turns into Summer, Summer into Fall,
Fall into Winter, and Winter back into Spring again.

Second, because one side will produce its opposite
side, all temporary phenomena have the seeds of their
opposite side within them. For example, success contains
the seed of failure, failure contains the seed of success;
wealth contains the sees of poverty, poverty contains the
seeds of wealth. This implies that no principal is "pure";
each contains the promise of the other.

Third, even though an opposite may not be seen to be
present, no phenomenon is completely devoid of its
opposite state. For example, no season is ever completely
fallow, since within it are the seeds of growth for the
seasons to follow. One principle produces the other.

3. The Yin and Yang of
Research and Practice

When discussions of technology adoption from
research into practice occur, there is inevitably an
undercurrent of feelings from the academic side of "Why
don't they [industry] see how good this is?" At the same
time, for the same tool or technique, someone from
industry might ask themselves "Why [or how] do they
expect me to use this?" Both parties know that they have
a symbiotic relationship with one another, yet they seem
unable to truly understand what each other needs.

The academic needs an industrial partner to adopt the
research results so that the prototype can be validated (or
refiited), creating a feedback loop so that the next iteration
of the solution is that much better. The industry person
knows that academic research is potentially very valuable
to them, since the results from the work could be matured
and integrated into existing processes to improve

important product quality attributes. So why doesn't
adoption happen more easily? The reason may lie in the
Yin and Yang model of technology adoption.

Academic research and industry practice can be
described as two halves of the same whole [9]. They have
opposite attributes: academic vs. industry; research vs.
practice; theory vs. application. On the academic side, at
the beginning is basic research that is conducted in the
lab. The ultimate goal of the research may be to solve
some real world industry problem (the white dot inside
the dark part). When the research produces preliminary
results, they may be adopted as industrial practice. At this
period of time, the research portion is getting smaller and
smaller, and the industrial practice is getter larger and
larger. After industry starts to use the results from
academic research, new problems will appear, so industry
brings the new problems back to academia. During this
time, the portion of industry is getting smaller and smaller
until it disappears. Then new research starts to solve new
problem. This process keeps on going on, reaching ever
higher according to the constant and changing Yin and
Yang cycle.

In [6] it is argued that syntax and semantics are the
Yin and the Yang of the Web, and should be
complementary to each other rather than independent - or
worse, incompatible - from one another. Similarly,
academic research and industrial practice can be viewed
as the Yin and Yang of technology adoption:
interdependent and complimentary. Harrison makes a
similar argument in a recent article [5], in which he
advocates the need to discuss technology transition from
both the academic and industrial points of view.

3.1 The Yin: Research

To make research results easier to adopt by industry,
there needs to be a much clearer communication chaimel
between the academic researchers and industrial
practitioners. In many ways, this is standard requirements
engineering and as software engineers it should be
common practice. Alas, it is more often an example of
"Do as I say, not as I do."

It is also important for researchers to have conclusive
results that provide unequivocal evidence as to the
efficacy of the results. Many research papers attempt to
illustrate the potential of their results through needlessly
complicated mathematical formulas. Mathematics has an
important role to play in explaining theory and verifying
characteristics of a system. However, the equations
should clarify the results, not obftiscate them. Too often
the mathematics in many software engineering research

CMU/SEI-2003-SR-004 20

Research results are
adopted by industry

Industry brings
problems to research

Figure 1: Yin and Yang

papers appear to accompany the prose purely for the sake
of providing the illusion of formalism where none was
warranted.

Empirical studies can provide objective measures of
efficacy that industry can readily understand. If the
studies are accompanied by detailed instructions of on
how replicate the experimental results, or how to tailor
the process for trials at the industrial partner's facility, all
the better. Unfortunately, empirical studies remain an
under-utilized tool in service of technology adoption [3].

3.2 The Yang: Practice

As the recipient of research results, industry needs to
play a more active role in the problem of technology
adoption. For example, providing clearer requirements
would greatly help the researchers steer their work
towards outcomes with a better chance of success than if
they are working without any guidance. However,
requirements engineering requires two parties, and just as
software engineering researchers are often poor masters
of requirements elicitation, industrial partners are often
not very good and clearly communicating their needs.

Part of the problem may lie in the fundamentally
different goals of academic research and industrial
practice. Researchers tend to try for a 100% solution;
practitioners may often be satisfied with an 80% solution,
leaving the remaining 20% for the next iteration of the
Yin and Yang cycle. This partial solution is often
preferable to a full theoretical solution that is correct in all
cases on paper, but impractical when it comes to
realization.

Cryptography is an excellent example of such an
area. It relies on basic and fundamental theoretical
research. Yet for it to be put into practice requires quite a
different mindset. In the book Practical Cryptography
[4], Ferguson and Schneier state:

"Building real-world cryptographic systems is

vastly different from the abstract world of most
books on cryptography, which discuss a pure
mathematical ideal that magically solves your
security problems. Designers and implementers
live in a very different world, where nothing is
perfect and where experience shows that most
cryptographic systems are broken due to
problems that have nothing to do with
mathematics."

This quote is particularly interesting, since Schneier is the
author of one of the best-known textbooks on theoretical
cryptographic methods [7]. Software engineering
researchers could benefit by learning from his change of
philosophy in the last eight years.

3.3 Yin and Yang: Research and Practice

As shown in Figure 1, the Yin and Yang model
consists with static model and a dynamic model, both part
of the same whole [10]. In the static model, the world as a
whole consists with a pair of two connected but opposite
halves, each as half of the small opposite spot inside with
the opposite outside. This model can be used to explain
many everyday situations. For example, modeling the pair
of employee and employer describes the relationship of
administrator (under control) and administrated
(incontroUable).

In the dynamic model, the pair of opposites changes
and evolves in continuous manner, transitioning in two
directions (forward and backward) simultaneously and
recursively. The dynamic view helps to consider how and
when enforcing or adopting the opposite for reaching
one's own goals is the best choice.

When academic research and industrial practice are
viewed using Yin and Yang as the whole world, the
relationships between the two become apparent. The
static model indicates that "Academic Research" always
takes advantage of some industrial practice gains as the

CMU/SEI-2003-SR-004 21

small spot inside, and the positive or negative impact of
"Industrial Practice" as the outside opposite partner. The
dynamic model indicates that neither "Academic
Research" nor "Industrial Practice" should ever overcome
one another for too long; if this happens, the cycle of
innovation begins again.

The balance between academic research and
industrial practice must be maintained. The equilibrium
between the two is their natural state; it is perturbed when
new requirements arise and new results are made
available. Using such a holistic approach that incorporates
the Yin views of research and the Yang views of practice
can foster technology adoption.

References

[1] "Chinese Philosophy: Yin and Yang" Online at
http://www.wsu.edu:8080/~dee/CHPHIL/YINYANG.htm.

[2] "Where does the Yin and Yang Symbol come from?"
Online at
http://www.chinesefortunecalendar.com/yinyang.htm.

[3] Budgen, D.; Hofihagle, G.; Muller, M.; Robert, F.; Sellami,
A.; and Tilley, S. "Empirical Software Engineering: A
Roadmap." To appear in Proceedings of the lO"'
International Conference on Software Technology and
Engineering Practice (STEP 2002: Oct. 6-8, 2002;
Montreal, Canada). Los Alamitos, CA: IEEE Computer
Society Press, 2003.

[4] Ferguson, F.; and Schneier, B. Practical Cryptography.
John Wiley & Sons, 2003.

[5] Harrison, W. "The Marriage of Research and Practice."
IEEE Software, pp. 5-7, March/April 2003. IEEE Computer
Society Press, 2003.

[6] Patel-Schneider, P; and Simeon, S. "The Yin/Yang Web:
XML Syntax and RDF Semantics." Proceedings of WWW
2002 (May 7-11,2002; Honolulu, HI). ACM Press, 2002.

[7] Schneier, B. Applied Cryptography: Protocols. Algorithms,
and Source Code in C {2"^ Edition). John Wiley & Sons
1995.

[8] Tilley, S.; Huang, S.; and Payne, T. "On the Challenges of
Adopting ROTS Software." Proceedings of the i"*
International Workshop on Adoption-Centric Software
Engineering (ACSE 2003: May 9,2003; Portland, OR).

[9] Trochim, W. Research Methods Knowledge Base. Online
at http://trochira.human.comell.edu/kb/.

[10] Zhou, Z. "CMM in Changing Environment with
Uncertainty - Injecting Ancient Chinese Philosophy into
Modern Science and Technology." To appear in
Communications of the ACM, 2003.

CVIU/SEI-2003-SR-004
22

Two good reasons why new software processes are not adopted

Stan Rifkin
MASTER SYSTEMS INC.

2604B El Camino Real
Carlsbad, California 92008 USA

®+l 760 729 3388 sr@Master-Systems.com

Abstract

There are many reasons we do not adopt soft-
ware engineering processes, including those associ-
ated with tools. This paper presents two of the most
persuasive reasons, based on a literature review of
175 references.

The archetypal dimensions of adopting a new
things are: attributes of the thing itself (classically
relative advantage, compatibility, complexity, tri-
alability, and observability), qualities of the adopt-
ers, the strength of opinion leaders in diffusion net-
works, characteristics of the change agent, and
organizational factors. [16] In addition, other
authors have identified environmental factors, too.
Lopata cites seven of them. [7] All of these factor
studies suffer several deficiencies: they are static and
linear combinations, if combinations at all; there is
no priority of factors; there is no time variation of
the influence of the factors.

In conducting a literature search for a related
paper [15], the author read over 175 references seek-
ing to understand what drives software engineering
process adoption. The author believes that many of
the factors presented in the literature are actually
dissatisfiers, that is, their absence will signal adop-
tion impediments, but their presence is not a suffi-
cient condition for adoption. Presented here are two

satisfiers, that is, if the dissatisfiers are addressed
then these models positively explain adoption.

1. Two good reasons

The basis of selection for these two reasons is
over-simple: They elegantly explain a great deal of
otherwise monolithic approaches, such as factor
studies that try to identify and isolate the controlling
influences on adoption. The two answers below are
more dynamic and identify that certain factors are
more iiifluential during certain epochs or under
certain conditions and not at other times/conditions.
Such a contingency style ("What is critical for adop-
tion?" "It depends!") reveals far more than any set
of factors that are linearly aligned in an inexorable
(or unstated) time sequence. Also, both answers
leave plenty of room for human forces, technical
details, and organizational/environmental influ-
ences, all of which are part of the rich reality of im-
plementing software engineering processes.

1.1. The first model

This model is taken from Reperming [13]. The
explanation of process adoption relies on Figure 1,
below. The grammar of the diagram was first
popularized in Senge [19], where it is called a causal
loop diagram. The intuition is that there are three
forces that determine whether a new process will be
used in practice: normative pressure, reinforcement,
and diffusion.

CMU/SEI-2003-SR-004 23

ObMrvallon of
Ef1on-Rnult<

Unkag* by Otiwra

Managcra- Qoal
for Commltnwnt

Comm)tm«ftt *
Gip

vEnorlAllocattd
totht

limovMlon

Figure 1. Arrangement of the dynamic forces of implementation, (from [13], pp. 109-127. Reprinted by
pennission of the Institute for Operations Researcii and the Management Sciences (INFORMS))

• Normative pressure is that exerted by manage-
ment to meet expectations, to achieve norms. Man-
agers set goals for commitment to implement the
innovation (in this case, process improvement). If
the gap between the managers' goal and the cur-
rent commitment is large enough, then the pressure
on those affected is increased to raise their com-
mitment to implement.

• Reinforcement is the process by which the pres-
sure to increase commitment is translated into
effort. In this model there is a direct relationship
between effort and results, so as effort is increased
then positive results are, too.

• Diffusion is something of the flywheel effect in
which those affected observe improved results so
they, in turn, increase their commitment to imple-
ment the improvement innovation.

The explanation ~ composed of the (necessar-
ily) linear arrangement of words, sentences, and
paragraphs - gives the appearance that managers'
normative intentions might begin the whole pro-
cess, and then the flow proceeds in the manner
described above for the first time through. After
that, things can get interesting. For example,
Repenning (p. 120) described an instance where the
diffusion loop damps the commitment to imple-
ment when the results appear to be disproportion-
ately low with respect to the effort allocated.

The simulation model in the title of Repen-
ning's article illustrates the interaction among the
three forces. Essentially, the two loops with the Rl
and R2 labels tend to amplify effects, because there

are + marks all the way around each loop; the one
marked Bl, where B stands for balancing, because
it has an odd number of - marks [14], can reduce
future commitment as the gap between actual
commitment and the managers' goals closes.

Now we can see the ups and downs of imple-
mentation:

• When the managers' goals for commitment are
not sufficiently different from the current commit-
ment then there will be insufficient pressure to
commit going forward.

• Whenever the effort is (too) low, then the
results will be low and the commitment will
decrease in a vicious cycle.

• Whenever the effort-results linkage observed is
(too) low, then others will not be inspired to com-
mit and the effort allocated will be decreased,
decreasing the results still more, in a vicious cycle.

Repenning was able to reproduce in his model
the situation in which managers set appropriate
goals, allocate sufficient effort and then under-
estimate the delay needed to achieve results, so the
commitment is eroded and the results fall off
because of the connections among the goal, com-
mitment, effort, and results. With another set of
values, Repenning showed that once the flywheel
effect of diffusion is in place, due to the long-term
positive relationship between effort and results,
then normative pressure does not play such an im-
portant role, can be removed, and the implementa-
tion continues its virtuous cycle.

CMU/SEI-2003-SR-004 24

At the end of the article, Repenning gives
advice to managers facing the task of implementa-
tion:

1. Do not prepare to implement something new
until and unless those who control resources
become "fully committed to the effort and patient
in the months between adopting" and to having the
results motivate further deployment.

2. While seeking to have the results themselves
stimulate the flywheel effect, do not do this at all
costs. Such a Herculean effort would be seen by
future adopters as consuming an effort dispropor-
tionate to the results, so that the virtuous cycle
would not happen.

The first bit of advice is important because so
many authors implore their readers to frame the
process improvement implementation as a project,
rather like a software project. This would miss the
point that plaiming a software project is by and
large a solved problem, while plaiming human
changes, especially by engineers and engineering
managers, is not. Accordingly, Repenning's advice
can be seen as a case perhaps for planning a process
improvement as a project, but then do not imple-
ment it as a project, as it is too difficult to estimate
the relationships among the variables.

1.2. Advantages of the first model

There are several reasons that Repenning is a
superior source on vmderstanding why new pro-
cesses are not adopted:

• It has face validity, that is, it tracks what we
already know by personal, idiosyncratic experi-
ence, and by the experience of others (to be detailed
below as part of the literature review)

• It pulls in the characteristics we customarily,
perhaps cursorily, associate with implementation

Mark Paulk frames it differently. Some software pro-
jects are planned as discovery activities, iteratively
reducing equivocality in the problem, solution, and/or
project spaces. Implementation can gainfully be planned
and performed this way, in planned cycles that itera-
tively identify and reduce risk. (Personal communica-
tion.)

success, such as leadership (setting norms and
sticking with them), managing change (how im-
provement is communicated, as in the effort-results
link), allocating sufficient resources (effort in this
case), rewards, and the need to begm improvement
with sufficient energy.

• It takes into account many forces, not just a sin-
gle one.

• Those forces are arranged in a simple structure
that can have a complex, non-linear interaction.
Causes may become effects, there can be competi-
tion among the forces or they can align, and, there-
fore, not only success can be explained but so can
failure. And the possible ups and downs are illus-
trated by the model.

• It describes both a process and factors.
• It depends upon and sums up considerable

theory. It is not just one person's bright idea.
• Without the insight gained by using the model

we are unlikely to succeed on intuition alone.

1.3. The second model

In her article, Markus [8] guides us through the
"home grounds" of the two most prevalent argu-
ments about why process innovations are not
adopted: either the process (or system of processes)
itself is flawed in some technical respect (e.g., hard
to use) [4], or the intended targets of the improve-
ment (we humans) have some inherent reason to
resist the implementation [17]. That is, there is a
system-determined answer and a people-deter-
mined answer; the result in both cases is resistance.
It is, therefore, the role of the implementer to either
restructure the technical aspects of the system or
restructure the people aspects (rewards, incentives,
span of control, new job titles).

Markus notes that we see this dichotomy in
solutions: some solutions address purely technical
aspects, such as user involvement in the require-
ments and design phases, and others address how
humans change in response to new processes try-
ing to be introduced. She proposes a third theory,
interaction, that does not rely on the assumptions

CMU/SEI-2003-SR-004 25

of the other two. There are two variants of inter-
action theory:

l.Sociotechnical: it's all one system, and every
part interacts with the others [1,5,18].

2. Political: it's about power, who has it, and who
loses and gains with the introduction of the new
shiff.

In Table 1 Markus frames her insights in terms
of resistance. Like any good theory, these three can
be used to predict where to look for problems and
solutiorxs.

What she finds, and asks us readers to look
closely at our own situations for, is that (even)
when people- and system-determined problems are

addressed and solved, "resistance" remains, but
when interaction with the organizational context or
power distribution is addressed, then the
"resistance" goes away. Accordingly, interaction
theory is a better (normative) guide for imple-
mentation.

Looking at interaction instead of people or
systems implies that a certain kind of information is
used as evidence of implementation. That kind of
information is not usually valued by us engineers
or business people. The logic of using this kind of
evidence begins with a worldview or ontology.

PMpWnJMWIMnM InlMMMQ TMOfy
CauM Of mistinoe

Assumptions ttout ptfposM olinlDr-

FiCtors Inismsl to psopto aid groups

CognitMstyte
Psmntfty trtKs
Humnitttm

AJ^XIMS of systams ire oonstalent
with Rrtonif Thsory of M«Mge>
iwwl, cvt to iwludsd from ftr-

Systsfn toctora such u ischnicaf
sxoslonoB and srgonofncs

Ud(of usar-ftiancinass
Poor humn factofs
InadaQUBta lachnical dasign or

implBmentation

Pufpoaas of ayslafns areoonsiitant
wtti RttiornI Thaory of MtfMga-
ffnontfCan baaxdudadfroni

kiMfactan of tystsm md ooniaxt of
UK

SodofacMcafiMrianf: Iniaraclxinof
sysoni wm wBion VDO*

Po^ictl vtfitnt. Intaracflon of systant
wnn uMuuaon Or vaTr
orgviizitionst power

Socfofachnicaf MriMf: Systantsmay
have tfv purpoaa to dMnge
orgviizationil cutture, not just

fwDca/vartJanT Systafnsfnay ba
IfMandad to changa ttw baianoa of

Assunpttons about organizattons

Assumptnns about ffisistanoa

Organizationaf gosis shared by al Oganizattarat goals shared by aO docnecnncer nnenr uoaB
oorvltioned by histofy

MMca/varianf: Goals <lfler by
orgsnizationsi location; oonUct is

Rasstanoe Is attribute of ttieirv
tended system user undesirable

Reslstanoais attrtxite of the
kitonded system user, undesinbie

Aesctsnoe is a product of the set-
ting, users, and dasignersi neither
desirable nor undesirable

Table 1. Theories of resistance: underlying assumptions, (from [8], pp. 430-444. (c) 1983 ACM, Inc.
Reprinted by permission.)

Facts needed in raal-««ofid case for
Viearytobeapptcable

ftettctnns derived frorn iheohes

System is resisted, resistors dWer
from nonresistors on certain
personal (hmensioris

Change ttw people Involved, resist-
ance «« disappear

Mb rotation among resistors and
nonresistofs

Inleraction Tiieo^
(PeMkatVaiiMil)

System is resisted, system has
technical protiiems

System is resisted, resistance occurs
in the context o(pottcal stnjggles

Fix technical problems, resistance wt
disappear

Improve system efficiency
Improve data entry

Changing indnriduals andAx ixmg
iechnidf featifes «iil have itue
etteci onresistarKe

Resistance wM persist in spite of
time, rotation, and tecfVMc^
improvements

Interaction theory can exptain other
relevant orgaiiutional phenonema
in addition to resistance

Table 2. Theories of resistance: predictions. (from[8], pp. 430-444. (c) 1983 ACM, Inc. Reprinted by
permission.)

CMU/SEI-2003-SR-004 26

Ontologies are basic beliefs about how the
world works. One example is positivism,
which believes that there is an enduring real-
ity that exists independent of our sensing or
perception of it. When we turn our backs on a
mountain it is still there! Another example is
that the world is socially-constructed, i.e., that
we make sense of what we perceive based on
how society instructs us to. Each of these two
examples also implies epistemology and
methodology, that is, what can be known for
sure and what methods generate such knowl-
edge. Positivism, sometimes called "normal
science," believes in "hard" facts - that is,
quantitative measurements - obtained in such
a way that the measurements can be obtained
by anyone else equipped with the same
instruments. Interpretivism, which corre-
sponds to the social construction of reality,
seeks to find the patterns that operate in social
settings, the collections of phenomena that
seem to fit together. In the interpretivist para-
digm it is acceptable that the search for those
patterns is in a social setting that cannot be
repeated, because the environment is not
controlled or even controllable, as in a test
tube laboratory. Objectivity in this paradigm
cannot be obtained. The methods are gener-
ally called qualitative [2,10,11,12,20].

The interaction framework espoused by
Markus means leaving the methods of normal
science (and engineering and commerce) in
favor of interpretation, a form of subjective
judgment. If we accept the invitation to take
into account new kinds of information
(namely subjective sources) then we may see
things we did not before. But, it is difficult to
let go what we think we can know for sure in
exchange for learning more about the situa-
tion from less of an absolute perspective.

It is worth mentioning that one of the
objections of normal science is that social sci-
entists "make up" constructs, such as morale,
intelligence, and power, that those constructs
do not have an existence independent of their

definitions. Abraham [6], a recovering physi-
cist, has argued persuasively that the con-
structs of classical physics, such as distance,
acceleration, and force, to mention but a few,
are no less "made up" and do not exist inde-
pendent of our thoughts about them. That we
ascribe measurements to distance, accelera-
tion, and force reify them precisely to the
extent that measurements of morale, intelli-
gence, and power do.

One of the popular ways to express that
the social construction of reality acts as filter
on what we see is the often-cited quip quoted
by Karl Weick [21], p. 1. It refers to American
baseball, where a ball is thrown (pitched)
towards a batter. If the batter does not swing,
then a judge (an umpire) calls either "ball" if
the trajectory was outside a mythical box
between the shoulders of the batter and his
knees, or "strike" if it was inside that box.
Three umpires were talking. The first said, "I
calls them as they is." The second said, "I calls
them as I sees them." The third and cleverest
umpire said, "They ain't nothin' till I calls
them." Later Weick avers that when people
say "I'll believe it when I see it," they more
likely mean "I'll see it when I believe it." And,
quoting another source, "man is an animal
suspended in webs of significance he himself
has spun." (pp. 134-135)

1.4. Advantages of the second model

Like the first model, this one incorporates
other theories [9], so it is not (just) one per-
son's bright idea. It also addresses competing
theories that are likely the most prevalent in
the implementation literature and practice, so
the insights are novel and useful. It also pre-
dicts the problems and solutions better than
the other two theories. In addition, "resis-
tance" is redefined as natural and a part of
any change, not something to be conquered
and overcome. And last, it invites us to
broaden our computer science-, software

CMU/SEI-2003-SR-004 27

engineering-centric methods for observing
and gathering information, something that
many implementers feel is necessary to be
successful, that somehow trying harder with
what we already know how to do is not more
effective. [3]

2. Implications

As designers of processes and tools that
we want adopted by others, we should under-
stand that there is only so much power in the
technical content of our processes and tools.
As change agents, that is, implementers of
processes and tools, we should understand
that the contours of the process and tool are
basically dissatisfiers, factors to be overcome,
and that we should turn our attention
towards the human aspects, especially the
collective aspects, of implementation. Power
and how our focus shifts over the period of
adoption trump technical features every time!

Several examples may help to illustrate
this dichotomy. Imagine a software engineer-
ing tool that aids component reuse by keeping
track of in which programs/classes the com-
ponents are used and in which version or
variant. While this seems innocuous enough,
because it appears to be a central repository it
would have to fit into an enterprise that is
centrally organized. Trying to fit a central
repository of component use into an organi-
zation that is decentralized would be a chal-
lenge, even though we might all agree that the
tool is inherently useful. That is, while it has
technical merits it cannot be implemented in
certain kinds of organizations. Or, imagine a
tool that finds errors in static text and is free
(such as lint). Clearly this is useful, has
relative advantage. But it upsets the power
structure because it points out defects. What
programmer would want to have a list of
his/her defects that could be used against
him/her - particularly at the height of a
career? Yet most advice about implementation

says to recruit the opinion leaders, the profes-
sionals who are respected precisely because
they are at the height of their careers!

What to do? Realize that many tools and
processes are point solutions, meant to be
inserted into a much, much larger context, one
that may not be hospitable. Therefore, point
solutions need to be integrated from the start
into their larger environments and tested for
value in that context.

3. Acknowledgements

The paper this one was based on has
benefited from improvements suggested by
Eric Busboom, Ray Fleming, Suzanne Garcia,
Robert Glass, Watts Humphrey, Philip John-
son, John Kunz, Ray Levitt, Steve Ombum,
Mark Paulk, Shari Lawrence Pfleeger, and
John Tittle. I am especially grateful to Marvin
Zelkowitz for letting me express some
thoughts that had been brewing for a long
time.

4. References

[1] Bosh'om, R. P., and Heinen, J. S. (1977,
September). MIS problems and failures: A
socio-technical perspective, part I: the causes.
MIS Quarterly, 1(3), 17-32.

[2] Burrell, G., and Morgan, G. (1979).
"Sociological paradigms and organizational
analysis." Heinemann, Portsmouth, NH.

[3] Butler, B., & Gibbons, D. (1998). Power
distribution as a catalyst and consequence of
decentralized diffusion. In "Information sys-
tems innovation and diffusion: issues and
directions" (T. J. Larsen, and E. McGuire,
Eds.), pp. 3-28. Idea, Hershey, PA.

[4] Fitzgerald, B. (1996, January). Formal-
ized systems development methodologies: A
critical perspective. Information Systems Jour-
nal, 6(1), 3-23.

[5] Harris, M. (1996, March). Organiza-
tional politics, strategic change and the

CMU/SEI-2003-SR-004 28

evaluation of CAD. Journal of Information
Technology, 11(1), 51-S.

[6] Kaplan, A. (1964). "The conduct of
inquiry: Methodology for behavioral science."
Chandler Pub. Co., San Francisco.

[7] Lopata, C. L. (June 1993). The cooperative
implementation of information technology: a pro-
cess of mutual adaptation. Unpublished doctoral
dissertation, Drexel University, Philadelphia,
PA.

[8] Markus, M. L. (1983, June). Power, poli-
tics, and MIS implementation. Communications
of the ACM, 26(8), 430-444 .

[9] Markus, M. L., and Robey, D. (1988,
May). Information technology and organiza-
tional change: Causal structure in theory and
research. Management Science, 34(5), 583-598.
[10] McMaster, T., Vidgen, R. T., & Wastell,
D. G. (1997). Technology transfer: diffusion or
translation? In "Facilitating technology trans-
fer through partnership: Learning from prac-
tice and research (Proceedings of the IFIP TC8
WG8.6 international working conference on
diffusion, adoption and implementation of
information technology)" (McMaster, Tom,
Mumford, Enid, Swanson, E. Burton, War-
boys, Brian, and Wastell, David, Eds.), Amble-
side, Cumbria, UK, pp. 64-75. Chapman &
Hall, London.
[11] Meyerson, D., and Martin, J. (1987,
November). Cultural change: An integration
of three different views. Journal of Management
Stiidies, 24(6), 623-647.
[12] Orlikowski, W. J., and Baroudi, J. J.
(1991, March). Studying information technol-
ogy in organizations: Research approaches
and assumptions. Information Systems Research,
2(1), 1-28.
[13] Repenning, N. P. (2002, March-April). A
simulation-based approach to vmderstanding
the dynamics of innovation implementation.
Organization Science, 13(2), 109-127.
[14] Richardson, G. P. (1991). "Feedback
thought in social science and systems theory."
University of Pennsylvania Press, Philadel-

phia, PA.
[15] Rifkin, S. (2003). Why software pro-
cesses are not adopted. In "Advances in Com-
puters" (M. Zelkowitz, Ed.), vol. 54 ed..
Elsevier, New York.
[16] Rogers, E. M. (1995). "Diffusion of inno-
vations." (4th ed.) The Free Press, New York,
NY.
[17] Roth, G., and Kleiner, A. (2000). "Car
launch: The human side of managing change."
Oxford University Press, New York, NY.
[18] Ryan, T. F. , and Bock, D. B. (1992,
November). A socio-technical systems view-
point to CASE tool adoption. Journal of Sys-
tems Management, 43(11), 25-9.
[19] Senge, P. M. (1990). "The fifth discipline:
The art & practice of the learning organiza-
tion." Currency Doubleday, New York, NY.
[20] Silva, J., & Backhouse, J. (1997). Becom-
ing part of the furniture: The institutionaliza-
tion of information systems. In "Information
systems and qualitative research (Proceedings
of the IFIP TC8 WG 8.2 International Confer-
ence on Information Systems and Qualitative
Research, May 31- June 3, 1997, in Philadel-
phia, Permsylvania USA)" (A. S. Lee, J. Lie-
benau, and J. I. DeGross, Eds.), Chap. 20, pp.
389-414. Chapman & Hall, London.
[21] Weick, K. (1979). "The social psychol-
ogy of organizing." (2nd) Wiley, New York.

CMU/SEI-2003-SR-004 29

Leveraging Cognitive Support and Modern Platforms for
Adoption-Centric Reverse Engineering (ACRE)

Hausi A. Muller and Anke Weber
Department of Computer Science

University of Victoria, Canada
{hausi, anke@cs. uvic. ca}

Ken Wong
Department of Computing Science

University of Alberta, Canada
kenw@cs. ualberta. ca

Abstract

Common office suites are capable, mature, flexible,
extensible, and familiar to many developers. For
example, they are used daily to browse the Web, produce
multimedia documents, prepare presentations, maintain
budgets, and to construct Web contents. These
Commercial Of-The-Shelf (COTS) software products and
middleware-based environments can be extended and
leveraged to provide familiar support for software
engineering tasks and thus may ease the barriers to
adoption. Our hypothesis is that users will more likely
adopt tools that work in an environment they use daily
and know intimately. That is, tool adoption will be
improved if we specifically address the issues of cognitive
support and interoperability. In this paper, we describe
how we address these issues with our Adoption-Centric
Reverse Engineering (ACRE) project and specifically
with our tool environment ACRE VI.0.

1. Introduction

Over the past decade, we have directly encountered
and experienced the research tool adoption problem in
many guises in the process of deploying software reverse
engineering and software visualization research tools in
industry. Analyzing these problems, we realized that the
most critical adoption issues stem from integration and
interoperability problems of our tools with respect to the
mental models of the developers and their existing
development tools.

First of all, the cognitive support afforded by our tools
was not compatible with the cognitive support afforded
by the existing development tools [10]. Software
development tools aid software engineers by participating
in their thinking and work. Thus, when we use the term
cognitive support, we mean the principles and means by
which cognitive software processes are supported or
aided by software engineering tools. Working with a set
of existing tools, software developers build up cognitive
support over time. Leveraging this hard-won cognitive

support effectively is critical for their overall productivity
and efficiency. Thus, developers easily reject a new tool
if it does not jive with their valuable cognitive support
model. The problem of inadequate cognitive support in
our tools became evident through informal feedback, user
studies, and structured tool demonstrations [9] [7] [8].

Second, a single research tool intended to aid software
development typically addresses only few development,
understanding, or maintenance tasks. Thus, such research
tools must interoperate with other tools through
integration mechanisms, such as data integration (i.e., so
that tools can read and write common data interchange
formats, and control integration (i.e., so that one tool can
control another), and presentation integration (i.e., so that
several tools have a uniform, familiar look-and-feel) [13].
For example, the end-user programming capability [14]
through the scripting layer in Rigi [2] allows it to
coordinate other tools or to be controlled by other tools.
Tool builders have exploited this Rigi feature successfiilly
to create new tool environments (e.g., Dali [17], Bauhaus
Rigi[16],orShimba[15]).

Our main hypothesis is that in order for new tools to
be adopted effectively, they must be compatible with both
existing users and existing tools. To validate this
hypothesis, we are building prototype software
engineering tools based on open standards (e.g.. Scalable
Vector Graphics (SVG) [19], and GXL Graph eXchange
Language (GXL) [12], both based on XML) popular
office suites (e.g., Microsoft Office XP, Lotus
SmartSuite, Sun StarOffice, Adobe Acrobat, and Corel
WordPerfect Office), and common middleware
technology and plug-in platforms (e.g. scripting
languages, Model-Driven Architecture (MDA), IBM
Websphere, and Eclipse). Using these, we will conduct
industrial case studies and structured tool experiments to
validate our hypotheses. The experience gained in this
endeavour will be beneficial to both academic research
and industrial practice.

CMU/SEI-2003-SR-004
30

Table 1 Meeting RE Requirements with MS Excel, PowerPoint and MS Visio

RE Requirement Excel PowerPoint Visio

Visualize program information
artifacts and architecture

Drawing tools
Custom presentations
and animation

Templates for diagrams
(e.g., UML, Web sites)

Statistical data analysis and
metrics t, ' -

Statistical functions,
charts, forecasting ■ ;.

' ..i.. .. ■ -....!

'BuBt-indiaftej;
!,'^,fi'lL .,Il,;::i-,;..;,:,.. '

Re-document system
Report builder; synch
with data sources

Custom presentations
and animation

Synchronize wnth data
sources

r~——

?Collabofation features

Protect and share
worifbook
Track changes

Track changes and
merge documents

^

-.''■-
Meeting scheduling and sending documents via email ,.'' ■

Robust Standard functionalities to build upon; e.g. "undo"
.1

Data-driven and net-centric
Web services. Smart Tags, and Dashboards. Web publishing
Integrate with databases (e.g.. Access) and MS server environments

Interoperability
Active X/OLE support
Support for XML, SVG objects, and many other objects

* End-user programmable and
'OfRce automation

Macrorecording, playing, and editing. Scripting with VBScript ,
(Com) Add-lns with VBA, Dynamic Libraries with .Net

Leverage cognitive support Popularly adopted and familiar

2. Extending Common Office Tools and
Middleware Technology: ACRE Vl.O

Office suites are highly popular platforms that
typically offer a number of programmable core functions
and applications for document creation, drawing,
database storage, spreadsheet, and presentation. Table 1
lists some of the functionalities of MS Office and Visio,
which we can exploit for building software reverse
engineering and visualization tools on top of these
platforms.

Building software development environments using
these kinds of commercial products is not a new idea. A
cornerstone of the Desert environment is a custom editor,
based on the Adobe FrameMaker application to produce
source code and architectural documentation [5]. Also,
the Visual Design Editor (VDE) is a domain-specific
graph editor built on top of Microsoft's PowerPoint
application using the Visual Basic scripting language [3].

ACRE Vl.O is the first version of the software
evolution enviroimient under development at the
University of Victoria as part of our ACRE (Adoption-
Centric Reverse Engineering) project [5]. It consists of
several software visualization engines on top of various
office products, including Lotus Notes, Excel,
PowerPoint, and Visio. The software engineering tools in
our ACRE envirormient interoperate using the ACRE

persistence engine and SVG (Scaleable Vector Graphics).
SVG, a W3C XML standard, is an effective solution for
smart cross-platform graphics.

In the following subsections, we give short summaries
of our implementations. More details can be found on the
ACSE Web site [1].

2,1. The ACRE Persistence Engine

Figure 1 illustrates the architecture of the ACRE
Persistence Engine, an extensible middleware system
upon which we develop software engineering tools [1].
The architecture utilizes international standards and a
common data format for third party integration.

The ACRE persistence engine is implemented using
the IBM Websphere software platform, the OMG's
Model Driven Architecture (MDA), and OTI's universal
tool platform Eclipse. We use open standards for network
and data exchange services (e.g., Web Services
Description Language (WSDL), Simple Object Access
Protocol (SOAP), and Open database Connectivity
(ODBC).

The ACRE Persistence Engine supports
communication and XML/GXL-based data exchange
between the various ACRE clients, which are described in
the following subsections.

CMU/SEI-2003-SR-004 31

Figure 1: Architecture of the ACRE Persistence Engine

2.2. The ACRE SVG Visualization Engine

The ACRE SVG Visualization Engine (ASVE) is a
graph visualization engine for exploring and annotating
software artifacts [4]. The user can filter, rearrange,
layout, annotate, display, and change the visual
characteristics of nodes and arcs to better understand the
architecture of the software system.

It is built exclusively with SVG and ECMAScript.
ASVE is embeddable into "host" applications such as
Web browsers and office tools (e.g., PowerPoint, Excel,
or Word). We have also implemented an ASVE
visualization interface for LotusNotes.

We have implemented the following Live Document
features in Excel:
• We enhanced the documentation capabilities of the Rigi

reverse engineering system: Our implementation
manages different views on the Rigi graph data and
statistics in Excel within one workbook. We also use
Excel charts in PowerPoint for advanced presentations
features.

• We capture Rigi graphs and display them in Excel,
PowerPoint and Visio. We have implemented basic
editing functions for Rigi graphs in Excel, PowerPoint,
and Visio.

2.3. Towards a Live User Manual for Software
Engineering Documentation

An ACRE Live Document is data-driven, interactive, and
adapts automatically and intelligently to its context (e.g.,
its word processor and its reader) [11]. We use Live
Documents to overcome selected challenges in software
engineering documentation:
• to synchronize code and documentation automatically

(e.g., keep diagrams in sync with source code)
• to produce multiple output versions from one source

consistently (e.g., for print, online, and audio use)
• to address different audience needs (e.g., user manuals

for novice and expert users)
• to explore the system without leaving the document
• to support group collaboration

2.4. Leveraging Cognitive Support in Lotus Notes
to build ACRE Tools

ACRENotes, developed with the groupware product
Lotus Notes, stores both documents and data in Lotus
Notes' document database [1]. Documents can easily be
selected, browsed, filtered, and categorized. Predefined
agents and actions can manage documents as well. By
converting reverse engineering data (e.g., from GXL) into
these documents, we can maximize the user's capability
to manipulate reverse engineering data.
ACRENotes imports Rigi data in Lotus Notes' document
format and visualizes it using a Java Swing program and
an SVG component, respectively. ACRENotes leverages
the data repository, data visualization, end-user
programming, and team cooperation features of Lotus
Notes.

CMU/SEI-2003-SR-004 32

2.5. An ACRE Metrics Tool in Visio

The ACRE metrics tool in Visio is a welcome addition
to the Rigi graph editor. The metrics help the reverse
engineer to capture design characteristics of the software
system, to understand relationships among attributes, to
support software maintenance, and to decide on software
modification and reuse.

User

Figure 2: The ACRE Metrics Tool in Visio

Figure 2 illustrates how Rigi is connected to Visio,
which displays the results of computing the following
object-oriented metrics on the data provided by Rigi:

LOC (Lines of Code)
Lines of code (per method)
NMC (Number of Methods per Class)
CBO (Coupling Between Objects)
Number of accessing classes
RFC (Response For a Class)
Number of external methods per class

Figure 3 shows an example chart for the NMC metrics in
Visio. In the top left comer you can see the customized
Rigi toolbar that controls the input of the data and the
generation of the Visio charts.

Visio displays professional looking charts for these
metrics. Another useful feature that is difficult to
implement from scratch, but comes for firee when
building on the Visio platform, is the advanced zooming
functionality on the chart that the panel in the right upper
comer provides.

3. Visio as an adoption-centric platform

Visio provides advanced features for building UML
diagrams. These include building static diagrams for
Visual C++ and VB code. However, it does not yet
consider the relationship between class models. We plan
to build on these features to provide an advanced and
easy-to-adopt UML editor as a case study for a
comparison with professional tools.

Another planned case study is to visualize artifacts to
document Web site evolution. Reverse engineering of
Web sites requires adequate visualization of Web site
maps and Web site architecture. For example, even
Adobe GoLive, a standard tool for Web site development,
does the visualization of site hierarchies poorly. It
visualizes too much information and the hierarchy is
difficuh to navigate. Furthermore, broken links only
appear in one special window and not in the hierarchy
visualization itself

Our target tool for Web site visualization is Visio.
Visio can parse Web sites and supports Web site
visualization. The visualization is still mdimentary, but
the parser seems to be able to visualize applications
within Web pages, such as JavaScript, ASP pages, etc.
Furthermore, Visio supports many shapes and diagrams.
We can therefore implement different visualizations for
Web site architectures (e.g., according to different RE
problems) and synchronize them by programming Visio.
For example, Rigi (implemented in Visio) can be one of
these visualizations. Another possibility is UML diagrams
for the site architecture based on Visio UML diagrams. In
this case, the UML editor would be specifically targeted
to Web site evolution. In a further step, it would be
worthwhile to integrate the visualization with Excel
features (e.g., for metrics on Web sites or statistics). In
this context, we will also explore how and if the API's of
Macromedia Dreamweaver and Adobe GoLive allow the
extension of this tools towards more advanced Web site
evolution tools.

4. Evaluation

Using ACRE Vl.O, we will conduct industrial case
studies and stmctured tool experiments. Walenstein's
PhD thesis [10] includes a survey of the types of
phenomena that comprise cognitive support, including
external memories, various extemal stmctures, and

Figure 3: Example NMC Chart in Visio

CMU/SEI-2003-SR-004 33

scaffolding. It also proposes methods for systematically
enumerating the cognitive support provided by tools. We
will specifically investigate what kind of cognitive
support is needed and suited for software engineering
tools, and we will examine how to leverage the cognitive
support already provided by existing office tools
effectively. Walenstein's position paper, contained in
these proceedings, illustrates further how cognitive
support can be characterized using different factors and
how these factors can be used to evaluate and validate
cognitive support and in turn adoptability [18].

5. Implementation Experiences

One of the keys for effective MS Office automation is
to understand the MS Office object models and the
Microsoft terms and technologies (e.g., DCOM, COM,
ActiveX) as well as the installation procedures and the
scope of packages like Office XP developer. This is even
more difficult as the documentation and the relevant
Microsoft Web pages are complex and information is
hard to find.

In summary, the visualization of Rigi graphs with
PowerPoint drawing objects for the nodes and arcs scales
poorly. For example, loading a Rigi graph as a
PowerPoint drawing needs about three times longer than
loading the corresponding SVG plug-in. Once the MS
PowerPoint graph is dravra on the slide, changing slides
performs normal and efficiently fast in contrast to the
behavior of the SVG plug-in.

Implementations on top of MS Office can be ported
fi-om one Office tool to another without major
implementation changes (e.g., charts use a similar API in
Excel and PowerPoint). Programming drawing elements
in Visio requires a different programming approach that
is based on the master and stencil paradigm in Visio.

We further experimented with Internet Explorer, with
Microsoft Word XP, and with Microsoft PowerPoint XP
for embedding SVG components, and with Adobe
Illustrator 9.0 and 10.0 for creating them. The
implementation of complex interactions (e.g., graph
filtering) was fast in comparison with the same task done
in Tcl/Tk for the Rigi user interface. As SVG is not a
high-level language, manual programming is tedious and
repetitious. Consequently, automatic generation of SVG
files is the appropriate approach for SVG file creation.
Loading of SVG components does not (yet) scale very
well; all used tools fi-eeze for a recognizable time while
loading complex graphs. Once loaded, the graphics
perform efficiently in PowerPoint and Internet Explorer
but they slow dovra document behavior, e.g. opening a
slide with a SVG component requires the same amount of
time for initially loading it freezes the tool for a
recognizable time, which is different to common graph
formats such as JPG or TIF.

6. Acknowledgements

We would like to thank the entire ACRE/ACSE Team
at the University of Victoria for the prototype
implementations and documentation. We also would like
to thank Jon Pipitone, University of Toronto, for his work
on the implementation of the SVG graph visualization
engine. This work has been supported by the Natural
Sciences and Engineering Research Council of Canada
(NSERC), the Consortium for Software Engineering
(CSER), and the Center for Advanced Studies (CAS),
IBM Canada Ltd.

7. References

[1] ACSE Web page, http://www.acse.cs.uvic.ca/

[2] H. A. Miiller and K. Klashinsky. "Rigi—A System for
Programming-in-the-large," 10'' IEEE/ACM International
Conference on Software Engineering, pp. 80-86, April 1988.

[3] N.M. Goldman and R.M. Balzer. "The ISI Visual Design
Editor Generator," IEEE Symposium on Visual Languages (VL
'99), pp. 20-27, September 1999.

[4] H. Kienle, A. Weber and H. A. Muller. "Leveraging SVG in
the Rigi Reverse Engineering Tool," SVG Open Developers
Conference, Zurich, Switzerland, July 15-17, 2002.

[5] H.A. Muller, M.-A. Storey and K. Wong. "Leveraging
Cognitive Support and Modem Platforms for Adoption-Centric
Reverse Engineering (ACRE)," CSER Research Proposal,
November 2001.

[6] S. Reiss. "Simplifying Data Integration: The Design of the
Desert Software Development Environment," 18f^ IEEE/ACM
International Conference on Software Engineering (ICSE1995)
pp. 398-407, May 1996.

[7] S. Sim and M.-A. Storey. "A Structured Demonstration of
Program Comprehension Tools," 7** IEEE Working Conference
on Reverse Engineering (WCRE 2000), November 2000.

[8] M.-A. Storey, S. Sim and K.Wong, "A Collaborative
Demonstration of Reverse Engineering Tools: The SORTIE
Project," http://www.csr.uvic.ca/chisel/collah/

[9] M.-A. Storey, K. Wong and H.A. Muller. "How do
Program Understanding Tools Affect how Programmers
Understand Programs?" Journal of Science of Computer
Programming, Vol. 36, No. 2-3, pp. 183-207, March 2000.

[10] A. Walenstein. "Cognitive Support in Software
Engineering Tools: A Distributed Cognition Environment,"
Ph.D. Thesis, Department of Computing Science, Simon Eraser
University, May 2002.

CMU/SEI-2003-SR-004 34

[11] A. Weber, H. Kienle and H.A. Muller. "Live Documents
with Contextual, Data-Driven Information Components,"
Proceedings of ACM SIGDOC 2002. Toronto, Canada, October
2002.

[12] A. Winter, B. Kullbach and V. Riediger. "An Overview of
the GXL Graph Exchange Language," Springer Verlag: S. Diehl
(ed.) Software Visualization, International Seminar Dagstuhl
Castle, Germany, May 20-25,2001.

[13] K. Wong, "The Reverse Engineering Notebook," Ph.D.
Thesis, Department of Computer Science, University of
Victoria, 1999.

[14] S.R. Tilley, K. Wong, M.-A.D. Storey and H.A. Muller.
"Programmable Reverse Engineering," International Journal of
Software Engineering and Knowledge Enginering, Vol. 4, No.
4, pp. 501-520, December 1994.

[15] T. Systa, T. K. Koskimies; and H.A. Muller. "Shimba—An
Environment for Reverse Engineering Java Software Systems,"
Sofhvare—^Practice and Experience, Vol. 31, No. 4, pp. 371-
394, April 2001.

[16] R. Koschke. "Atomic Architectural Component Recovery
for Program Understanding and Evolution," Ph.D. Thesis,
Institute of Computer Science, University of Stuttgart,
Germany, 2000.

[17] S. J. Carriere, S. G. Woods, R. Kazman. "Software
Architecture Transformation," IEEE Working Conference on
Reverse Engineering (WCRE '99), Atlanta Georgia, October
1999. http://www.sei.cmu.edu/ata/products services/dali.html

[18] A. Walenstein. "Improving Adoptability by Preserving,
Leveraging, and Adding Cognitive Support to Existing Tools
and Environments," Proceedings of the Adoption Centric
Software Engineering (ACSE 2003), Portland, Oregon, May
2003.

[19] W3C. Scalable Vector Graphics (SVG) 1.0
Specification, W3C Recommendation, September 2001.

CMU/SEI-2003-SR-004 35

Improving Adoptability by Preserving, Leveraging, and Adding
Cognitive Support To Existing Tools and Environments

Andrew Walenstein
Software Research Laboratory

Center for Advanced Computer Science
University of Louisiana at Lafayette

walenste@ieee.org

Abstract

Being adoption-centric means focusing research on what
technologies would be helpful to real users and trying to en-
sure that the results are more likely to be adopted. Too little
is known about how to improve adoptability. This paper
describes preliminary steps towards a framework for un-
derstanding methods for injecting innovations in a way that
makes the results more likely to be adopted. The framework
defines taxonomy of adaptations that tools and users un-
dergo in the face of innovations. It then employs theories of
distributed cognition to suggest which potential adaptations
would be considered potentially desirable to users because
they preserve, leverage, or add cognitive supports. An ex-
ample is given illustrating how this framework is being used
in exploratory design.

1. Introduction

The rate at which practitioners adopt the products of soft-
ware engineering (SE) tools research suggests that much
improvement is possible in making research resuhs avail-
able and adoptable. In some cases the lack of adoption
may very well be due to the way that software research
prototypes are developed. Frequently a simple, stand-alone
"demonstration" implementation is developed. Often this is
a bare-boned and impoverished environment or tool when
compared to the robust, full-featured, and highly usable
tools and environments that practitioners normally work
with.

An alternative approach to tools research is to employ
an "adoption-centric" approach of building innovations as
adaptations of the rich tools and environments currently
existing in practice. Here, "tools" and "environments"
are considered broadly, and would include editors, shells,
browsers, word processors, personal information managers.

and ordinary software development environments. An
adoption-centric approach would perform the tools research
with a concern for easy adoption of the tool by some real
user community.

Several potential advantages can be offered for this ap-
proach. First, reusing an existing environment can make
prototype development easier since the researchers do not
need to spend time implementing and perfecting common
but necessary infrastructure (undo, copy and paste, print-
ing, help, etc.). Simple, bare-boned "toy" tools frequently
miss these features or implement them awkwardly. This
will normally seriously affect user performance and satis-
faction, which will in turn make successful evaluation of
the innovation exceedingly difficult. Second, by using an
existing toolset one is more likely to find a user population
to evaluate the tool on.

Being adoption-centric while adapting existing systems
means that close attention will need to be paid to the ways
software engineers currently work, and to how innovations
can be fit into this work. This point is, in my opinion, the
most critical aspect of the approach, and the place where the
greatest research benefits can be expected. Being concerned
for current work practices grounds the entire research effort
in real user needs and situations. In addition, being con-
cerned with how the innovations fit into real work helps
assure that the research is in a position to make practical
impacts sooner than the 17 or more years that some SE in-
novations have taken [12]. The adoption-centric approach
is therefore not merely another attempt to build extensi-
ble development environments or to implement specific SE
tools on top of other tools. There is a real concern for mak-
ing innovations match realistic scenarios, and for introduc-
ing innovations to practical environments in ways that are
likely to be more readily adopted. Attention to other factors
such as marketing and organizational structure may also aid
adoption (e.g.. Fowler et. al [4]), but the prototype imple-
mentation is the main adoptability factor under the direct

CMU/SEI-2003-SR-004 36

control of most tools researchers.
Once the above general goals of adoption-centricity are

stated, however, the question of how to actually go about
achieving them looms large. How and why users adopt
new technologies is not well known, and even less is known
regarding how, exactly, one can build innovations that are
more likely to be adopted.

This paper outlines a general framework for understand-
ing adoption factors and recognizing opportunities for im-
plementing innovations in ways that are more likely to be
adopted. There are three main components to the frame-
work. The first component is a taxonomy of types of adap-
tations, both for tools and users. This taxonomy is pre-
sented in Section 2. The second component is an anal-
ysis of how to interpret adaptations—and the resistance
to such adaptations—in terms of adaptations to distributed
cognitive systems. This analysis is presented in Section 3.
The third component is a technique for analyzing existing
toolsets for opportunities to inject new technologies in a
ways that are likely to be adopted. The way this is currently
being approached outlined in Section 4. Section 4 also out-
lines how the framework is being considered in a project
relating to software clone detection and copyright violation
litigation.

2. Types of adaptation in adoption

Users adapt to new tasks and technology. Such user
adaptations include learning new concepts, skills, and prob-
lem solving techniques or strategies. As Mackay [11]
pointed out, users and their environment actually co-adapt
(also see Fowler et. al [4]). Users adapt their tools and en-
vironments to better suit their tasks and individual charac-
teristics. Tool adaptations along these lines include setting
key bindings, scripting, and programming. Users also adapt
their entire information space in order to help solve prob-
lems. For instance software engineers implement file nam-
ing conventions in part because this makes their browsing
and searching tools effective [7].

When any new technology or innovation is adopted by
users, it means they adapt again to the changes. It seems
likely that these adaptations could be effected in fundamen-
tally different ways. A vocabulary for describing the differ-
ent forms of adaptation is desirable. This section extends
Mackay's analogy by using concepts from biological evolu-
tion to understand tool and user adaptation types.

Biological evolution and adaptation

Biological evolution can be seen as an extended process of
adaptations to changing conditions. A naive conception of
evolution is that it makes steady progress towards organ-
isms of greater complexity and fitness. It is true that some

organism features are associated with a history of gradual
and incremental refinements of similar-but-less-fit features.
For example, Dawkins reconstructed a history of how com-
plicated eyes were built out of a series of additions and
refinements of previous structures [2]. Even so, the fossil
record also suggests that evolution should not be exclusively
characterized as a uniform process of gradual refinement.
The late evolutionary theorist Steven Jay Gould conspicu-
ously argued that the evolutionary history is "punctuated"
with periods of alternating relative stability and astonish-
ingly rapid and wholesale changes which include radical
changes to basic organism design [5]. This sort of dis-
tinction in evolutionary progression resonates with certain
theories of knowledge acquisition and learning [14] which
posit differences between learning by "accretion" and by
"restructuring". Accretion occurs when the knowledge can
be absorbed with only minor changes to the existing knowl-
edge structures, whereas restructuring is made necessary by
concepts and data that cannot be accommodated within the
existing structures.

Why do adaptations even occur? Adaptations occur, at
least in part, as responses to changes in living environment
(e.g., climate). Adaptations in this sense improve the fit-
ness of an organism to some ecosystem. Sometimes these
adaptations are specific to particular ecosystems—the or-
ganisms become "specialists". An example is the giant
panda, is adapted to survive on bamboo shoots and nothing
else. In contrast, some organisms are generalists and can
survive well in many ecosystems. An example the brown
bear, which is omnivorous and ranges very widely.

How do new adaptations arise? One part of the story is
simply by design variation through mutations which result
in improved fitness to the ecosystem. Another part of the
story is that an organism's existing features might be used
for additional or new purposes. Gould called this "exapta-
tion" [6]. An example he uses is how feathers may have
originally provided warmth, but were eventually a step to-
wards achieving airflight.

Applying the evolution metaphor to technology adoption

It is possible to see biological evolution as a metaphor for
user and tool adaptation. Based on the above discussion,
three basic contrasts might be helpfully applied to classify
user and tool adaptations.

First, user and tool adaptation may be divided into grad-
ual accumulation of design changes, and rapid, wholesale
changes. The former is common in the slow evolution of
product lines (e.g., creeping product features). Users also
gradually adapt by learning different problem solving skills
and tool features. Wholesale and rapid changes occur when
users adopt radically different tools such as new operat-
ing systems, development environments, or office products.

CMU/SEI-2003-SR-004 37

Users are often painfully aware of how they need to adapt to
such wholesale changes. Thus a first question for adoption-
centric SE is "what type of adoption is being attempted:
gradual accretion of localized design variations, or whole-
sale design changes?" The adoption-centric researcher must
know which is being attempted—and which is needed.

Second, the issue of specialization versus generality
needs frequently be considered for tool design. Specialized
tools may be more fit for certain tasks but require specific
learning (user adaptation) and may not "survive" changes in
tasks. Task specificity is a common argument for or against
various programming languages. An advantage of gener-
alized tool capabilities is that once users learn them they
can apply them in many situations. The drawback is that
the general capabilities might work less well than the spe-
cialized versions, or users may need to do more work, or
to customize them. In terms of adoption-centric design, the
researcher should likely be encouraged to recognize special-
ized and generalized capabilities in both tools and users and
take advantage of both when opportunities present them-
selves. For example, in certain work domains, program-
mers may be specialized to be highly familiar with spread-
sheets. This specialized expertise might be exploited by im-
plementing the innovation as an extension to a spreadsheet
program. But also note that a spreadsheet itself is general in
that it can be applied to many different tasks (compare, for
example, a tool that performs fixed calculations).

Third, it may be helpful to distinguish two different
classes of adaptations to existing tools, or aspects thereof.
The first is by simple design mutation or accretion. For ex-
ample, adding a call-graph visualization view to a toolset
might be termed simple accretion, whereas changing the
way error messages are displayed might be considered mu-
tation. The second main class of adaptation type is by
exaptation. Tool based exaptation might be said to occur
if new uses are made for existing specialized functionality.
For example, in Mackay's study [11], mail filtering func-
tionality was used to implement smart filing of messages.
In the realm of software development, Bellamy [1] noted
that Smalltalk developers would use a cross-referencer as
a way of locating semantically-related code. The develop-
ers would "tag" class methods as belonging to an applica-
tion by inserting references to a dummy class. The cross-
referencing was therefore not being used to trace down
real calls, but to approximate a mechanism for clustering
conceptually-related methods from multiple classes.

The adoption-centric researcher will want to be aware of
whether changes are being made by mutation, accretion, or
exaptation. One reason for wanting to know this, clearly,
is that the adaptations made to tools are likely to induce
similar types of adaptations to the users' knowledge of how
to use the tools. Tool mutation implies that the user must
adapt by modifying their skills and mental models for using

the affected features. Accretion, on the other hand, is likely
to allow simple knowledge accretion by the user. Exaptation
is relevant to tool researchers because users may already be
skilled in using the tool feature that is being exapted for a
different purpose, or they may be able to exapt an existing
feature or technique for use in conjunction with the new
innovation.

3. Distributed cognition & legacy user systems

I am a legacy user. So, in all likelihood, are you and ev-
eryone else. My favorite editors are Emacs andvi. This
fact might be viewed with considerable disdain by combat-
ants on both sides of the long-running "vi versus Emacs Ed-
itor Wars". I use both editors practically every day for writ-
ing papers, programs, email, and numerous other activities.
Many other and newer editors exist—certainly many specif-
ically tailed for programming. Some of these, perhaps, are
even superior to both of Emacs or vi (at least for some
tasks and in some ways), although I may never truly know
it. Myself and my computing environment in combination
form a legacy user system.

I use the term "legacy user" in the way a software main-
tainer would expect: a legacy user is analogous to a legacy
software system in SE. This term is intentionally selected.
Cognitive science regularly views human minds as com-
puter systems. Learning (i.e., user adaptation) serves to pro-
gram and maintain the cognitive system.

The term "legacy user system" is no accident either. The
cognitive science field of distributed cognition (DC) treats
cognition as a computational process distributed between
humans and tools (see Hutchins [9], Zhang et. al [17]). Thus
users in combinations with tools are seen to form DC sys-
tems. From this point of view, external artifacts are seen to
represent knowledge or cognitive states (goals, intentions,
etc.), and both users and computers are seen to process such
external knowledge and cognitive states. For instance, Flor
et al. [3] analyzed programmer pairs from the DC point of
view. In their analysis, they likened code scavenging to
case-based knowledge use: when code is scavenged, it is
copied with appropriate modifications, which is an analogue
of schematic abstraction and instantiation. Only instead of
occurring "in the head", it occurs in a text editor.

Legacy user systems are also computational systems:
legacy computational systems. Legacy systems are not nec-
essarily poorly maintained systems. Instead, they are iden-
tified by other characteristics: they are typically (1) consid-
ered "mission critical" for the organization using them, (2)
not implemented using the most up-to-date technologies, al-
though for various reasons it is desirable to bring them into
compliance, and (3) poorly documented and understood.
These are all characteristics of legacy users systems; the
term is apt:

CMU/SEI-2003-SR-004 38

1. The DC system as a whole is critical for effective work.
Clearly the user's own mind is mission critical, but
just as clearly their normal environments are critical
(or else adoption would not be a problem—they would
be able to effectively use whatever environment is in
front of them).

2. Updates to the legacy DC system is frequently desired
and, in the case of adoption-centric research, assumed
necessary.

3. The DC systems are almost entirely undocumented.
As HoUan et. al [8] point out, the roles that artifacts
play in cognition are often difficult to recognize. Care-
fiil field studies are therefore frequently needed in or-
der to reverse engineering and redocument legacy DC
systems in preparation for reengineering. It is well
known that humans generally are unable to articulate
how it is they think and act, and they certainly do not
come with cognitive design documentation.

The main value in bringing DC theory into the present dis-
cussion is that it identifies aspects of legacy user systems
which are important for effective distributed cognition.

More specifically, users rely on their external environ-
ment to provide cognitive support, i.e., to assist or help them
in their cognition [16]. This support is partially attributable
to the makeup of the tools. For instance most web browsers
maintain link visitation history mechanisms, and will dis-
play the visitation status of hnks by rendering non-visited
links in a different colour. Those features can support users
by acting as external memory: users no longer need to re-
member where they have been. In other cases the support
can be said to be "built up" in the environment through the
various adaptations and customizations they make. For in-
stance, the collection and organization of bookmarks is a
lasting external memory that users often depend upon. An-
other example, already mentioned above, is the tagging of
methods which was observed by Bellamy. These tags are
needed if the programmer is to use the code location tools
they are accustomed to. Over time, user and environmen-
tal adaptations generate a DC system in which the tools and
their features support cognition, and in which the users have
the skills, knowledge, and preferences for utilizing them ef-
fectively. Users are reluctant to adopt new technologies be-
cause doing requires new adaptation (learning), and may
destroy the cognitive support built up in their environments,
or make it less efficiently usable.

This analysis is helpful because it delves a little deeper
into the barriers to adoption. Existing theories of adoption
are compatible with this basic analysis (at least, the parts
dealing with the adoption factors associated with individu-
als). For example the so-called "diffusion of innovation"
theories [13] posit that individual evaluations of "useful-
ness", "compatibility" and "ease of use" greatly influence

decisions to adopt. But what, precisely, is "usefulness" and
"compatibility" and how can it be identified in tools? The
answer I am working towards is a partial one, but it is a step
in the right direction. Usefulness is a function of the cog-
nitive support provided, and "compatibility" should mean,
in part, the retention of built-up cognitive support. To make
innovations more adoption-centric, therefore, one needs to
reverse engineer and redocument existing legacy DC sys-
tems, and then build tools that can reengineer them in ways
that retain and build cognitive support.

4. Framework application

The overall aim of the present framework is to help in
reengineering existing legacy user systems. Below is a brief
outline as to how this might happen in the future. The basic
method is to first use the DC ideas to either guess or em-
pirically determine the cognitive infrastructure (i.e., adapta-
tions) users have built up in themselves and their environ-
ments. Currently we base this on an inventory of cognitive
support possibilities derived from a feature analysis of the
environments. Then opportunities are examined for adapt-
ing existing features in ways suitable for introducing the
new technologies. This general idea is explored below.

Eclipse and clone detection

At the Software Research Laboratory one of our projects
is to investigate techniques for detecting software clones,
copyright violations, and plagiarism. Software clones are
sections of code that are very similar. These commonly oc-
cur because of code "scavenging" in which code is copied
and then modified to suit local needs. Copyright and plagia-
rism cases involve finding and verifying the fact that code or
design aspects were copied from one code base to another.
In each case, code similarities of various types need to be
detected and investigated.

Our research is taking an adoption-centric approach to
developing and inserting suitable technologies into prac-
tices of SE and copyright litigation. This will result in sep-
arate tools for software engineers and for legal analysts, but
we are planning and developing both sets of innovations on
top of three main existing technologies: Eclipse, Microsoft
Office tools, and Microsoft Windows' These platforms are
suitable starting points as our anticipated user base is ex-
pected to be familiar with them. In particular, in legal cases
the users are expected to use Office tools such as Word, Ex-
cel, and PowerPoint in the generation of legal documents
and presentations. We expect synergy in our work on both
clone detection and copyright violation.

Our research strategy has identified three technological
additions that are intended to implement three activities.

'Eclipse, Office, and Windows are registered trademarks.

CMU/SEI-2003-SR-004 39

FEATURE DESCRIPTION REUSE MUTATE ACCRETE EXAPT
perspectives customizable/sharable views and visible actions
wizards steps users through common tasks
OLE integ. editors, views, and toolbar objects can be embeded
Task View users can edit and step through task (i.e., to do) list
Search View multiple search types, results filtering, sorting
Compare View two files can be compared side by side

new projects
new tasks

new cmnd
embed view
auto generate

new type
new views

search metadata

Table 1. Inventory of some Eclipse features and some adaptation possibilities

These additions address activities typical in reverse engi-
neering [15]. First, data must be gathered on where code
similarities occur. For this we wish to introduce various
automated and semi-automated code comparison technolo-
gies. Second, similar items must be classified into clone or
non-clone (or copy or non-copy), and then grouped or ag-
gregated into function-relevant clusters. For example, when
reengineering a software system the engineer may wish to
cluster related clones together so that new modules can be
generated by abstracting related and duplicated function-
ality into a set of related methods. In copyright litigation
contexts, the clustering might pertain to collecting together
different types of copyright violations (e.g., code copying
versus design copying). Third, exploration, visualization,
and evaluation must be performed. For instance, the over-
all distribution of clones across sub-project boundaries may
need to be known by project managers. Likewise lawyers
will want to see visualizations and analyses of the instances
and extent of copying. We are working on novel visualiza-
tions for code comparison and system visualizations. We
wish to add various automated measurements.

In order to continue forward we need to be able to ana-
lyze Eclipse, Office, and Windows so that our innovations
can be well matched to these technologies, and can be in-
serted in a manner that eases barriers to adoption. The re-
mainder of this section describes an approach we are con-
sidering for evaluating tools for adaptation possibilities and
cognitive support roles. The work is ongoing and prelimi-
nary, but the overview below gives a flavour of the type of
analyses we are considering. The overview may give others
ideas as to how to improve the analysis, and to apply it to
their own adoption-centric SE research.

A cursory inventory of Eclipse features yielded a list
suitable for determining adaptation possibilities. A subset
of this inventory appears in Table 1. This list of features
were then examined to see what adaptation mechanisms
were provided by Eclipse. These were categorized using
the adaptation taxonomy; examples are listed in Table 1.
The column "reuse" indicates an instance where a generic
feature might be used for new purposes. The entries in these
columns indicate ideas about how the adaptations might be
made (e.g., adding a new command to the Task view mu-

tates it). The inventory and classification generation took
about an hour to collect, although we refined this list and
its categorizations after various discussions. It is unclear at
this time how helpful this exercise has been, although obvi-
ously some similar type of analysis (perhaps a more infor-
mal and haphazard one) would need to be performed if one
is to build tool extensions. It may be worth noting, how-
ever, that the columns of Table 1 may be helpful in identify-
ing adaptations that are less disruptive to existing cognitive
support.

The features in the list were then examined in light of
various theories of cognitive support [16]. The aim was
to help understand their potential roles in supporting de-
veloper cognition. Although this is hardly a substitute for
studies of real users (users may not actually use the sup-
port, or may have many other types of built-up support not
knowable through armchair analyses), it seems to be a pru-
dent first analytic step. The next analytic step is to consider
how we might best implement our planned innovations on
top of this infrastructure. In this step we expect the theories
and models of cognitive support to be helpful, although we
have little to report at this point. Nonetheless a flavour of
the analysis can be relayed.

We know that current technological limitations make it
impossible to automatically and accurately detect all soft-
ware clones within a system. Thus the user must cooperate
with the tools in order to jointly determine which poten-
tial clones—i.e., "clone candidates"—should be considered
true clones. The classic way of doing this is to have one or
more clone detectors generate a list of clone candidates that
the user steps through and classifies as clone or non-clone
(or copy vs. non-copy in copyright tools). It seems clear that
the generic Task view functionality can be adapted: the
clone detector would generate a clone candidate list in the
task list (an accretion of functionality), and the user would
need to step through the task list and examine the candi-
dates, deleting ones that are non-clones. This would, in fact,
require a mutation (in particular, a specialization) of the task
view functionality since the potential clones are clone pairs
and the Task View behaviour would have to be modified
so that it browsed to the two clone locations when the user
double-clicks on the clone candidate.

CMU/SEI-2003-SR-004 40

The DC support point of view notes that this functional-
ity is an example of distributed planning and plan follow-
ing [16]. What the clone detector is doing is generating a
plan for checking the results, which the user (more or less)
follows to make those checks. The Task view functions
as an external memory for the plan, and for where one is
in following the plan. Reusing the Task view effectively
leverages existing cognitive support. Once this is realized,
opportunities for improving distributed plan following can
be explored. For instance, the above envisioned extension
forces the user to make a series of decisions about clones. It
is likely that ordinary users will not be able to decisively
classify clone candidates in the first pass. Said in other
words, they will likely have uncertainty in their decisions.
It makes sense to try to add support for uncertain knowl-
edge management by allowing the uncertainty to be exter-
nalized [10]. Otherwise the engineer will need to remember
the uncertain clone pairs in order to return to them, if nec-
essary.

Various designs can be entertained for implementing the
uncertain knowledge management support. Table 1 pro-
vides clues as to which ones might affect adoptability. For
instance, the Task view might be mutated in order to en-
code the uncertainty in the classification. It might be prefer-
able, however, to create a more specialized version of the
Task View. Since there are already several specializa-
tions of the Task View (the Compare and Search views
are both specialized task steppers), it may be preferable to
add an entirely and obviously new view (that is, by accret-
ing similar functionality) that allows clone candidates to be
classified with varying degrees of uncertainty. Although we
are nowhere near being able to decide what implementation
is best, the vocabulary of cognitive support and adaptation
taxonomy appears to be helpful in understanding design op-
tions and then reasoning about their potential adoptability
implications.

5. Summary

In order to achieve the goals of adoption-centric SE re-
search, one must have an idea of what factors affect adopt-
ability and what changes can or should be made to exist-
ing environments in order to introduce innovations. The
direction presented here is to examine the cognitive support
present in target tool environments and look for appropri-
ate support to preserve, leverage, or add. Although progress
has at times seemed glacial, the cognitive aspects of adop-
tion resistance appear critical, and my personal feeling is
that there is no choice but to continue the difficult and long-
term work necessary to understand and address the role of
cognitive support in tools and how various adaptations to
them affect adoption.

References

[1] R. K. E. Bellamy. Strategy analysis: An approach to psy-
chological analysis of artifacts. In D. J. Gilmore, R. L.
Winder, and F. D6tienne, editors, User-Centred Require-
ments for Software Engineering Environments, pages 57-67.
Springer-Verlag, 1994.

[2] R. Dawkins. River Out Of Eden: A Darwinian View Of Life.
HaiperCollins, 1995.

[3] N. V. Ror and E. L. Hutchins. Analyzing distributed cogni-
tion in software teams: A case study of team programming
during perfective software maintenance. In J. Koenemann-
Bellinveau, T. G. Mohen, and S. P. Robertson, editors. Em-
pirical Studies of Programmers: Fourth Workshop, pages
36-64, Norwood, NJ, 1991. Ablex.

[4] R Fowler and L. Levine. A conceptual framework for soft-
ware technology transition. Technical Report CMU/SEI-93-
TR-31 and ESC-TR-93-317, Software Engineering Institute,
Carnegie Mellon University, Dec. 1993.

[5] S. J. Gould and N. Eldgredge. Punctuated equilibria: the
tempo and mode of evolution reconsidered. Paleobiology,
pages 115-151,1977.

[6] S. J. Gould and E' Vrba. Exaptation - a missing term in the
science of form. Paleobiology, 8:4-15, 1982.

[7] W. G. Griswold. Coping with crosscutting software changes
using information transparency. In A. Yonezawa and S. Mat-
suoka, editors, Metalevel Architectures and Separation of
Crosscutting Concerns, volume 2192 of Lecture Notes in
Computer Science. Springer-Verlag, 2001.

[8] J. Hollan, E. Hutchins, and D. Kirsh. Distributed cognition:
Toward a new foundation for human-computer interaction
research. ACM Transactions on Computer-Human Interac-
tion, 7(2): 174-196, June 2000.

[9] E. Hutchins. Cognition in the Wild. MIT Press, 1995.
[10] J. H. Jahnke and A. Walenstein. Reverse engineering tools

as media for imperfect knowledge. In Proceedings of the 7th
Working Conference on Reverse Engineering (WCRE'2000),
pages 22-31. IEEE Computer Society Press, 2000.

[11] W. E. Mackay. Responding to cognitive overload: Co-
adaptation between users and technology. Intellectica,
30(1): 177-193, 2000.

[12] S. L. Pfleeger. Understanding and improving technology
transfer in software engineering. Journal of Systems and
Software,41(2-3):in-U4, July 1999.

[13] E. M. Rogers. Diffusion of Innovations. The Free Press,
New York, NY, 1995.

[14] D. E. Rumelhart and D. A. Norman. Accretion, tuning, and
restructuring: three modes of learning. In J. W. Cotton and
R. Klatsky, editors. Semantic Factors in Cognition. Erlbaum,
Hillsdale, NJ, 1978.

[15] S. R. "nUey. The canonical activities of reverse engineering.
Annals of Software Engineering, 9(l-4):249-271, 2000.

[16] A. Walenstein. Cognitive Support in Software Engineer-
ing Tools: A Distributed Cognition Framework. PhD the-
sis, School of Computing Science, Simon Eraser University,
May 2002.

[17] J. Zhang and D. A. Norman. Representations in distributed
cognitive tasks. Cognitive Science, 18:87-122, 1994.

CMU/SEi-2003-SR-004 41

A Lightweight Project-Management Environment
for Small Novice Teams

Ying Liu
Department of Computing Science

University of Alberta
Edmonton, T6H 2E8, AB Canada

+1 780 492 3118
vingl(5)cs.ualberta.ca

Eleni Stroulia
Department of Computing Science

University of Alberta
Edmonton, T6H 2E8, AB Canada

+1 780 492 3520
stroulia(g)cs.ualberta.ca

ABSTRACT
The success of a software-development project depends on the
technical competence of the development team, the quality of
the tools it uses, and the project-management decisions it makes
during the software lifecycle. New requirements, tight delivery
schedules and developer turnaround present the team with
challenges that need to be addressed with informed
development-plan modifications. Project-management skills are
especially difficult to teach. When working on a substantially
complex project, students often become too involved with
coding to recognize the need for management; and when they
do, they frequently lack the necessary information to make a
good decision, because, more often than not, they do not have a
complete overview of their progress.

In this paper, we describe a lightweight environment for
supporting, monitoring and analyzing activities related to
software development. This environment integrates a set of
tools, including CVS, newsgroups, code analysis and personal-
process tools, and uses a browser-accessible Wiki-based user
interface as a front end to all the underlying tools. We have just
deployed this environment in the context of an undergraduate
software-engineering course. We believe that the familiar
lightweight user interface will encourage students to use the
integrated tools and will improve their overall learning
experience, especially in the project-management area. At the
same time, it will enable the instructors to monitor the team-
development progress and to provide relevant and constructive
feedback.

1. MOTIVATION AND BACKGROUND
In addition to the technical competence of the development
team, the success of a software-development project also
depends on the quality of the tools the team uses, and the
project-management decisions it makes during the sofWare
lifecycle. New requirements, tight delivery schedules and team-
member changes present challenges that need to be addressed
with informed development-plan modifications. Such project-
management skills are especially difficult to teach. When
working on a substantially complex project, students often

become too involved with coding to recognize the need for
proper tools usage and project management; and when they do,
they frequently lack the necessary information to make a good
decision, because, more often than not, they do not have a
complete view of their progress.

In our WikiDev project, we have been working on developing a
lightweight environment integrating a set of basic functionalities
for supporting developers, working in small teams, to monitor
and reflect upon their process and the code they develop. The
specific context is that of supporting student teams in
undergraduate project-based software-engineering courses, and
enabling instructors to monitor team collaboration, to evaluate
work products and to provide salient and timely advice to the
teams. Our vision behind WikiDev is to encourage and support
reflection in student software-development teams. Our
experience has been that a team with a competent project leader,
with a solid understanding of the overall project objectives and
tasks, is more likely to deal with unforeseen setbacks and
complete the development on time. We believe that even teams
without such a leader can be equally successful, assuming that
the team members take a reflective stance towards their task
plan and are always aware of their progress status. Given an
accurate task schedule and information representative of the
team's actual progress, each individual team member can notice
deviations and adjust.

The first important issue we had to address in designing
WikiDev was what information to provide to the development
team. Such information should be useful for evaluating project
progress and supporting project-management decision making.
Furthermore, it should be based on data provided by readily
available and preferably routinely used tools. At the same time,
it should be somehow "richer" than what would be available to
the team if they simply used these underiying tools. In principle,
the more primary data is available, the more information could
potentially be inferred about the project. On the other hand,
explicit data collection, when it is not directly useful to the
software-development process can be perceived as a burden by
the developers; this is especially true with students who do not

CMU/SEI-2003-SR-004 42

TA Forms TA forms wrapper

PSP Forms • PSP forms wrapper

Code Differencing tool
(di£r,lil0SS,9iiihdi&nrLcmg, SQXuontk dM) Differencing wrapper

only diff metrics
are stored

Together
JMetric JMetric wrapper

jAnafels Ojipponent,

Statistical
Analysis

Database

Team Wild UI
Students view project status
 auuuiis (uhajhln/utitiLkuuL) CVS

NNTP,_.„WikiPlugin

NNTP,
renders hews

access newsgroups
collaborate in wiki style

CvsViewer WikiPlugin

,^„ jarses logs

posts news

CVS^i^parse^
Status logs—

Wiki

CVS commits file
CVS Repository fe repository CVS Wrapper

Newsgroups
UNIXUI

CVS notifies Wiki of actior
Wiki constructs .Java page
Wiki informs database

Student Component

Figure 1: The WikiDev Component Architecture.

necessarily appreciate the need for record keeping for project-
management purposes.

We decided that WikiDev should capitalize on CVS, the
Concurrent Versioning System, one of the most basic tools
frequently used by software teams, even novice ones such as
undergraduate computing-science students. As a code
repository, CVS already contains multiple versions of the project
code that can be analyzed quantitatively, to infer different
software metrics, and qualitatively, to extract a model of its
high-level design. CVS also maintains a historical log of the
team members' activities on the repository. As such, it can be
mined to extract information about the collaboration behavior of
the team members.

Another regularly used tool for communication within and
across teams is the newsgroups. Focused newsgroups, with
questions and answers related to a particular technology and/or
problem, are a valuable resource for a community of developers
and can also be mined to better understand the nature of the
difficulties that these developers face.

Another equally important issue was whether or not to develop
WikiDev as an extension of a specific IDE. On one hand, it has
to be closely integrated to the core development activities, so
that it is not perceived as "additional work". It also has to be
easy to leam and lightweight to adopt, otherwise it will not be
usable in the context of a course term project. We decided
against adopting a specific IDE. We have noticed that many
students already use their preferred IDE and establishing a single
common one would be a challenge. Furthermore, learning an

IDE may involve a learning curve that cannot always be
accommodated within a course term. Instead, WikiDev adopts
Wiki as a lightweight front-end integrating a set of other tools. A
Wiki does not support programming per se, and is independent
of any programming language and design methodology. Instead,
it is a simple web-based whiteboard tool, widely used by
communities who wish to communicate information of common
interest. Its underlying metaphor is "shareable HTML pages,
immediately publishable on the web". This is a quite simple idea
and even students who are not already familiar with the concept
can easily understand and use the Wiki. In the context of
WikiDev, the Wiki simply provides a simple and uniform user
interface for accessing the underlying tools and for displaying
the collected data and the information inferred from these tools.

The rest of this paper is organized as follows. Section 2 gives a
detailed description of the WikiDev architecture and elaborates
on its individual components. Section 3 briefly describes the
envisioned usage scenarios of WikiDev. Section 4 discusses
several related efforts. Finally, section 5 summarizes our work
and outlines our plans for the fiiture.

2. ARCHITECTURE OF OUR
ENVIRONMENT

Figure 1 diagrammatically depicts the WikiDev component
architecture. The browser-accessible Wiki provides the standard
user interface for the team developers. All other tools, CVS and
the newsgroup among them, are embedded as plug-ins to the
Wiki. The data produced by the integrated tools are stored in a

CMU/SE1-2003-SR-004 43

shared database. A set of analysis tools, not directly usable by
the teams, have access to the database to analyze the original
data and produce additional information of interest that is
subsequently delivered to the team through the Wiki.

In the rest of this section, we describe the individual tools
integrated in WikiDev and the data they contribute to the
WikiDev repository.

Wiki. Wiki is in Ward's original description 'the simplest
online database that could possibly work" [2], It is a
whiteboard-like communication mechanism and provides "open
editing". Furthermore, the php-Wiki we adopted for WikiDev is
extendible in that it supports the integration of other applications
as plugins; control widgets integrated in the browser-accessible
user interface can be programmed to invoke other applications.
These two capabilities enable a flexible combination of

structured interaction, with the plugged-in applications, and
unstructured interaction, through the whiteboard.

In WikiDev, each development team has its own area for their
project, where all types of related information can be posted,
such as meetings agendas and minutes. At the same time various
plugins enable the team to invoke functionalities of several other
tools, described in the rest of this section, and to view their
project-related information produced by the analysis of their
project-related data.

CVS: The Concurrent Versioning System [4] (CVS) uses a
hierarchical structure to record multiple versions of source-code
modules. It enables backtracking, i.e., reverting to earlier
versions, when the development has introduced undesired
features. It also detects conflicts, when multiple developers
modify the same module, and supports the merging of changes
when such collisions occur. WikiDev includes as a plugin a
browser of the team's CVS repository. Through the repository
browser, developers can browse through their code and even use
the Wiki search capabilities to search for specific identifiers.

In addition, WikiDev integrates, as a plugin, a browser of the
repository operations. CVS keeps a detailed history of its usage,
including who performed what operation, when, from where, on
which file, from which directory. Based on this data, a lot of
valuable information about the team's collaboration can be
inferred. For example, it can be inferred whether there are key
team members modifying many files, or whether there is a
specific file that has been modified by many developers.
Statistics, such as the average time lapsing between file
modifications, or the average time between a developer's
accesses of CVS, or the frequency of conflicts, can also be
computed.

We have been encouraging, and even requiring, the use of CVS
in our sofhvare-engineering courses. Unfortunately, our
experience has been that many teams do not use the tool
property. Some use it only in a perfunctory manner to meet
course requirements: they simply check their deliverable code in

CVS. Yet others exchange code modules among themselves
through email and have a single designated person check mature
versions into the repository. We believe that, by analyzing their
usage of CVS and regularly presenting this information to the
team through the WikiDev, they will be more motivated to adopt
proper CVS-usage practices.

Newsgroups: Our students use newsgroups extensively, mostly
to ask development-related questions that the instructor team
and their peers answer. Because of the high message traffic
however, some questions get asked repeatedly.

In the context of WikiDev, we plan to integrate the course-
related newsgroups so that postings get immediately added to
the repository, from where they can be accessed through the
Wiki fiizzy-search functionality.

PSP forms: According to our experience, the developers'
expectations of their progress deviates, quit often, substantially
from their actual project status. Teams may lag behind the
schedule from the eariy stages but only detect it after several
weeks. WikiDev integrates a set of forms implementing a
simplified PSP [7] instrument to help students obtain a more
realistic understanding of their effectiveness.

A full implementation of the entire set of PSP forms is
unrealistic in the context of an undergraduate software-
engineering course. Instead, we chose to implement a simple
defect-recording log associated with the CVS repository, so that
students can attach "defect annotations" on code modules of the
CVS repository. In addition, a set of developer-specific plugins
can be used to keep track of time spent on the project and code-
size estimates, and a set of project-specific plugins can track
project-plan summaries and improvement proposals.

Based on this information, students could first notice deviations
of the actual from the planned status and adjust their
development.

Analysis components
The data contributed to the WikiDev repository by the above
components, including code modules, CVS history, newsgroup
postings, and PSP data, is the subject of fiirther analysis by the
WikiDev "analysis components".

Code and Code-evolution Metrics: We have loosely integrated
JMetric [6] in WikiDev to quantitatively assess the quality of the
project modules. The reports generated by the tool, including the
code metrics and their corresponding "advisable" value ranges,
are stored in the WikiDev repository and can be viewed as
specially structured Wiki pages. In this manner the team can
easily notice "illegal" metrics values and may try to improve on
the quality of the offending modules.

CMU/SEI-2003-SR-004 44

rt'rjR.'-t-'^"^' xviMH puHIc > smvii «kD

< * {i * '^'l**] "*"' S^Wji.lircc iiwiiuttsv : ifmdei.pnD.'SwnnltWeTvK* i>i»-CJire^

Simple Web

Vie*fr^ ConH-.' TasSts ...

UtePagn ! DadtUnkt:!

ClMAat^Msc ;?*'*' Typ*;»rl(irt1:y^

;»■. i.; Sis 3 . i.»

^SubiWl MX ai«ilS*Jfrtlf''i

• ftatimi
• «!_^e«iniiitt^w*l<l
• iJmpteweb.SiaipleWeti
« BiiiiptvwBli.«n_«Din«nK_wiki

• MnipiiMnii,siKipi»EmwA(Up<»r
• stmpMHmb.Si«iptoC<H»t»1

latt eAln} on MBrflL2S_ioa3ji_5t_pm._
Bdif it P»Q«WBID!V!I P«!l Intol

S'«*tWe3Mwai^wJ"*tsi!s^ *j*

(a)

Figure 2: Some WikiDev screenshots.

iOlwibifMfafK •^sini^'cm^'npleiiMinvf i.Iii,ii^IS,i£g-

\fcawrg Cuntni Dut|9

I Ctp-wt ijiiB* ^^

"^"^ "^ _ j-a^A.^^^^^]

»»»" ^; Q '■K.i^eI.':.-'.T«tjL».v-Tfr,-

/* BJU.SO V /itnoo tmpod |aMnR.tJRL Import s[a\-A.n/t.Cam^^ '
(b)

Sot

• Sufrion 1.0

tMEifi iDMifK* s:3helaCnK,Ki (

flUfcli ComjicMrt 9atCananlP«nii(|. putBe MW nf ' r.i-ii.iehfU.ta ;

CiitTA>lcfccd!t»Llt •

)g0fi

h »t:>..or*: -;,f

C»<! !r t Bin J t! 3 ET^i

1

i
L* ■»3J, IJS; P-.:

-i

Si«/lii,h"'fi.j: r'jtiix-i« »■■* I -'i'tEj^i^Lnsi . j&v* ; JLC'Oi S ;'ru:!-1, i taj i.B^

sisr-^^ir.^-i^

• .Kutrr; L,

.* ^^■■■■'p.,U-/i':,.:-(-.--j

^ai. C!n''iri."t; o-r

■■"^ " ' ^.«it. t:!r',i !.">.! :-t;!

'>:7','-r>.r'"-'''<-

. Ot W«» 1 « I

.: (c)

CMU/SEI-2003-SR-004 45

Furthermore, WikiDev aims at analyzing the coding process
itself, by qualifying the nature of change between two
subsequent versions of a module in the CVS repository.
Focusing on the "modification" operations in the CVS history,
the code-evolution analysis plugin compares the original module
with the modified one. There are several possible means of
comparison and we are currently working on implementing
several of them; the simplest is to use the Unix diff on the two
versions, where more complex ones may involve the comparison
of abstractions of the code such as the Abstract Syntax Trees
(AST) [3], or the system dependence graphs (SDG) [1], or the
XMI class diagrams. The comparison of different views may
provide insights on whether the modified version is a refactored
version of the original, or an extension of its functionality, or
possibly a debugged version.

Statistical analysis: Finally, WikiDev will also integrate
statistical analysis tools to mine interesting patterns in all the
above data, such as association rules and sequential patterns [8].
Association rules can uncover information such as "which
members usually work at the same time period" for example,
where sequential pattern mining might discover that "file A
modifications are always preceded by modifications to file B".

This type of analysis may also be employed to correlated
patterns in the code-development process and objective
assessments of the team's performance, such as grades. Such
correlation would shed some light on what behaviors tend to
result in successfiil performance and what not.

3. FUNCTIONALITIES OF THE
WIKIDEV ENVIRONMENT
Figure 2 shows the various pages of the WikiDev corresponding
to its various fiinctionality plugins. Some WikiDev pages are
accessible to the class as a whole and some are accessible to the
developers of a particular team.

Team members access a root page for their team-specific
WikiDev area (see page (a) in Figure 2). Off this central page
are also indexed various unstructured pages that the team may
have constructed to maintain information relevant to the project.
Furthermore, the "UserTasks" plugin embedded in this page
shows to the currently logged in developer his or her tasks.

When a student accesses CVS, this action is recorded by the
CVS repository and a notification event is sent to WikiDev. The
WikiDev pai^es the CVS-operation history information and
records it its own repository. It also parses the CVS repository
structure and generates a page corresponding to each code
module in CVS (see page (b) in Figure 2). This page includes a
listing of the code module, its revision history in CVS, its
associated defect records, and other possible comments from the
developers on the module. The defect record of each module is
constructed through a special-purpose WikiDev plugin: when a
developer faces a problem with a module, he can retrieve the
module page in the WikiDev and, using the defect-annotation

plugin, he can add a defect record to the module, specifying the
nature of the problem, its urgency and who should address it.
This defect annotation becomes part of the module WikiDev
page. Later, the developer who fixes the defect will check the
corrected module in CVS and will edit the defect record to
reflect the fact that it has been corrected. Note that both the
defect record and the annotations do not affect the module in
CVS, only its corresponding WikiDev representation. Through
these corresponding pages, developers can use the WikiDev
search fiuictions to browse through their code, and look for
specific code identifiers or annotations. If they are interested in
a particular file, its modification history and the nature of its
evolution, developers can focus on the file-specific page.

A user-centric page provides each developer with an overview
of their own development contributions (see page (c) in Figure
2). This page shows the history of tasks for a specific developer
including any current tasks. Essentially this page is produced by
the "UserTasks" plugin - which is also embedded in the
Homepage - expanded to show the user's entire history

If a developer has a question or wants to exchange some ideas
with his/her peers, he may post a message to the course
newsgroups. Instructors, TAs and other students may respond.

4. RESULTS AND FUTURE WORK
In the context of our software-engineering courses, WikiDev is
intended as a lightweight "portal" for integrating a set of basic
tools that our student developers use and for providing value-
added information based on analysis of the collected data. Our
objective is to provide sufficient added value on top of the
underlying tools so that students are motivated to use them
appropriately and frequently, without actually imposing any
additional learning curve on them, except from what is required
to learn the underlying tools. In some sense, we plan to provide
a flexible, extendible "poor man's" IDE.

Of course there are several IDEs that may provide similar and
other additional functionalities. To our knowledge none of the
available IDEs offer the analysis capabilities we are currently
building in WikiDev. We anticipate that the analysis enabled by
WikiDev will support the students in their projects and, also,
will provide valuable insight to the instructors about how the
student teams work. Such insights will, in turn, guide the
instructors' feedback to the students and improve their learning
experience.

Our initial experimentation with the WikiDev analysis tools has
produced some interesting and promising results. The graphs
shown in Figure 3 were produced by analyzing the CVS usage
behavior of two teams'. The two graphs in the lower part of the
Figure, (c) and (d), show the number of CVS operations

' These graphs were produced by examining the CVS history
data of teams before the deployment of WikiDev.

CMU/SEI-2003-SR-004 46

performed by the members of teams A and B during project
development. The operation-dense periods are both located in
the second half period. However, groupB has a big operation
gap from November 6 to November 18; they have hardly
accessed CVS between these two dates. All members in groupA
used CVS regularly and made almost equal contributions
(assuming we can judge that by the number of modifications
they did to the CVS repository), but groupB only committed
files just before the due date. Moreover student 114 performed
much fewer CVS operations than the other members of team B;
on the other hand, all members of team A seem to have used the
CVS with a similar frequency.

More detailed information can be obtained by examining the
operation type diagrams, shown in graphs (a) and (b). These two
graphs depict the numbers of the various types of CVS
operations performed by the team members. The operation types
are:

A: file addition to CVS
C: merge is necessary between two checked-in versions,
but collisions were detected
F: a module is released
G: merge is necessary between two checked-in versions,
and is successful
M: file modification
O: file checkout
R: file removal
W: working copy of a file is deleted during update

As evidenced by the number of actual file modifications, the
workload of the groupA members is fairly similar and is above
the average value for all the students and also higher than that of
groupB. Besides, the collision fi'equency of groupB is higher
than average. Based on these graphs we can draw a conclusion

that the work habits of groupB are not as good as those of
groupA.

WikiDev is deployed for the first time this term and we will
■ soon have the first comprehensive set of data to report on its
effectiveness. Furthermore, we are currently re-implementing
WikiDev in the context of Eclipse [5], which seems to be widely
adopted and is positioned to become the IDE of choice for java
developers. We plan to comparative evaluate the two tools, in
order to better understand the advantages and disadvantages of
adopting an IDE.

5. ACKNOWLEDGMENTS
The authors wish to thank Curtis Schofield for his great
development work on WikiDev, and the anonymous reviewers
for their insightful feedback. This work was supported by
NSERC through a CSER3 grant.

6. REFERENCES
[1] D. Liang, M.J. Harrold: Slicing Objects Using System
Dependence Graph, The International Conference on Software
Maintenance, Washington, DC, November 1998.
[2] http:/AViki.orgAViki.cgi?WhatIsWiki.
[3] N. Howarth: Abstract Syntax Tree Design,
http://www.ansa.co.Uk/ANSATech/95/Primarv/l 55101 .pdf
[4] Concurrent Versions System, http://vyww.cvshome.org
[5] The Eclipse project, http://www.eclipse.org
[6]JMetric,
http://www.it.swin.edu.au/proiects/imetric/products/imetric
[7] H. Watts, Discipline for Software Engineering. Reading,
Mass. Addison-Wesley, 1995.
[8] J. Han, M. Kamber, Data Mining: Concepts and Techniques,
Morgan Kaufinaim publishers, 2000.

CMU/SEI-2003-SR-004 47

team A members' operations
DSIut)enl41

■ Sludent42

DStudent43

DStudenl44

■ Ave. forleam12

□ Ave for total teams

(a)
Total* M

^JOUL ^

optrillon typ*

on

team B members' CVS operations

250

200

e
o 150 •H.l
%
w

E 100 4

50.

DStudenl112

■ Student! 13

aStudent114

OSludentllS

■ Ave. for team30

oAve. for total team:

IM ■ilBlm^ J I Kl .rrJ\- n _ r
Total* A# c#

(b)
F# 6« M«

op«ritlon type

0#

team A

70

60

a
I 50
1

>
« 30
o

2
E a c

Student41

Student42

Student43

Student44

Ave ofteamA

IJ^^UK. fM:3liy

lit* "« "'*

a^ MSiaiB|j|»|j|M|M|Mim5| ii»i«i<lf^ii

(c)
c^V^c/c/c^^d^V^cZ/c/c^c^c^c^c^rfP'V"^ /^^^^wv^v

date

teamB

160

140

120

-Student112

-Student113

Student114

-Studenf115

-Ave for teamB

il teams

^ cfcf .^^ ^^ ^^cfc^"" <^^ d^^cf^ Cf^^ ^ ^ ^^^^^^^^^""^^^^^"^^^^^^

(d) date

Figure 3: Views on the collaboration process of two teams

CMU/SEI-2003-SR-004 48

Adopting GILD:
An Integrated Learning and Development Environment for Programming

Margaret-Anne Storey\ Mary Sanseverino, Daniel German, Daniela Damian,
Adrian Damian, Jeff Michaud, Adam Murray, Rob Lintem, James Chisan

Department of Computer Science
University of Victoria

Marin Litoiu Derek Rayside
Center for Advanced Studies, Program Analysis Group

Toronto, IBM Laboratory of Computer Science, MIT

Abstract

This position paper presents GILD - an integrated
learning and development environment for programming.
The objective of the GILD project is to provide facilities
for teaching and learning Java that are tightly integrated
with a Jully featured, mature and widely adopted
development environment GILD is being designed as a
plug-in for Eclipse and takes fiill advantage of the Eclipse
Java development tools. It will also include collaborative
support as well as more sophisticated methods for
teaching and learning the first principles of a
programming language. In this paper we identify the
technical and pedagogical aspects that we think will
contribute Jo its adoption by both teachers and students,
while discussing the challenges and barriers that we may
face.

1. Introduction

Teaching students how to program can be a challenging
task. Unfortunately, there are few tools that provide
pedagogical support for learning and teaching
programming. Fully featured integrated development
environments (IDEs) overwhelm novice programmers
and do not have all of the features needed to support
teaching. The programming pedagogical tools that do
exist (such as BlueJ [15] and DrJava [14]) have not seen
widespread acceptance. We suspect this is because they
tend to offer a minimal or reduced feature set and thus are
limited in how long they remain useful to the student
programmers. They also lack features that are commonly
available in collaborative desktop environments, such as
simultaneous document browsing/editing, instant
messaging, Web forums etc. Such features are often used
in other disciplines to enhance leaming.

Currently teachers usually make use of several tools
when creating materials for a programming course. They
may use an IDE to prepare program samples, a
presentation tool to present materials in class, a drawing
tool to create pictures, a Web-publishing tool to post
course materials, and e-mail to communicate with their
students. This leads to a scattering of course materials
and related information that is difficult to update and
share. Moreover, the current approach of using e-mail for
providing programming help outside class time is very
tedious and quickly breaks down - for example, students
often ask questions about code that the instructor can't
see. There exist some tools, such as Blackboard
(www.blackboard.com') and WebCT (www.webct.comX
that provide a Web portal to the material of a course, but
unfortunately these tools are not tailored to teaching and
leaming programming.

In our experiences, we have found that students will
learn programming concepts more quickly if they read,
write and test lots of example programs. Unfortunately,
instructors rarely have enough resources to provide
feedback on numerous programming exercises.
Automatic marking techniques are commonly deployed
but they are typically custom solutions that are difficult to
reuse or extend. Good teaching practices also
recommend providing in-class interactive exercises - but
with traditional pen and paper media it is impossible to
give feedback to every student solution in large classes.

We believe there is a need for an integrated leaming
and development enviroimient that will expand in
usefulness as the programmer's ability and need for
training increases. We have begun to develop such an
environment to help novice through intermediate
programmers leam Java. The GILD (Groupware-enabled
Integrated Leaming and Development) environment is
being buih on top of an existing and well-accepted IDE
(integrated development environment) within Eclipse [3].

' Contact e-mail: mstorev@uvic.ca: Website for this project: http://gild.cs.uvic.ca

CMU/SEI-2003-SR-004 49

Eclipse is an open-source platform for the creation of
highly integrated tools [16].

Our environment will make use of the powerful
infrastructure and large number of plug-ins that are
provided by Eclipse and the Eclipse community. We are
also using other tools and borrowing concepts from Web-
based learning tools and collaborative desktop
technologies to enhance learning in both co-located and
distributed settings. By building on top of a widely
adopted and powerful integrated learning environment,
while paying careful attention to pedagogical
requirements, we believe the GILD environment could be
widely adopted for teaching and learning programming.

The rest of the paper is organized as followed. In the
next section we detail the adoption goals of our project, in
particular emphasizing both technical aspects of the
GILD environment as well as the pedagogical
requirements that need to be met to ensure adoption. In
Section 3, we discuss how we expect both students and
instructors will adopt this tool and the expected benefits
such a tool can provide. In Section 4 we discuss the
adoption challenges that we face with both instructors and
students, and from the educational institution's
perspective. Finally Section 5 concludes this brief paper
and summarizes our current and future work.

2. Research Goals

There are many issues concerning the adoption of a
learning environment for programming. There are two
sets of users for this environment - teachers and students.
We conjecture that for both groups to adopt the
environment, it needs to be inexpensive, easy to install,
easy to use, and fit in with their existing tools and legacy
course information. But more importantly, the tool needs
to provide some gains with respect to the pedagogical
needs of both groups. In this section, we first discuss
some of the technical aspects of GILD and then explore
the pedagogical objectives for both teachers and students
and how they can be supported by the technical solutions
we suggested.

2.1 Technical aspects

2.1.1 Implement GILD as a plug-in for Eclipse

The Eclipse environment and its Java development tools
are already seeing widespread adoption. This rapid
adoption was anticipated due to Eclipse's open source
nature and its extensible architecture. Consequently we
decided to build the GILD environment on top of the
Eclipse Java Development Tools and Eclipse
infrastructure. Moreover we will leverage third party
plug-ins that can bring additional benefits to the users of

the GILD environment. For example, there are plug-ins
to support the automatic generation of UML diagrams
(for example, the SlimeUML tool [1]). Generation of
UML diagrams can help instructors explain code
examples, or can be used by students during code
explorations or to show their designs in course
assignments. Other plug-ins of interest facilitate pair
programming [2] and provide information on code quality
[21].

The environment we build will also be available as an
open source framework that is extensible (that is, we will
create GILD specific extensible points).

2.1.2 Integrate features from existing tools

From our own experiences as teachers and those of our
colleagues, we are acutely aware that instructors struggle
with integrating and synchronizing information from
many different tools. Tool switching and synchronization
problems are common to instructors of most fields, and
hence the recent rise in popularity of Web-based learning
tools [18]. Web-based learning tools provide an
integrated environment for preparing and managing
course materials. Although such an enviroimient may
seem to offer trivial improvements over using a selection
of tools, the biggest advantage they offer is that of
organizing course materials for both the instructors and
students. Note that a key criterion for an effective teacher
is to be organized [20].

Moreover, students should be able to use one learning
environment for both software development and course
material access.

Unfortunately, Web-based learning tools do not help
as much as one would initially hope when teaching or
taking a programming course. They are not tightly
integrated with the development environinents that are the
cornerstone tool for both instructors and students in a
programming course. To address this problem, we
propose that key features from a Web-based course
management environment should be tightly integrated
with a software development environment (as opposed to
the alternative approach of creating some programming
support and adding that to a Web-based learning tool).

We propose that the User Assistance plug-in for
Eclipse be used for authoring, integrating, storing,
organizing and presenting Web-based materials. Such
materials should be tightly coupled with the programming
examples in the Java development tool repository. We are
also exploring how collaborative support (currently being
added to Eclipse for other projects) can be leveraged in
the GILD environment.

The integrated approach we advocate would reduce the
need for both students and teachers to be constantly
switching between tools when interacting with a course.

CMU/SEI-2003-SR-004 50

2.1.3 Provide a customizable environment for learning
and teaching

One size definitely does not fit all when it comes to
teaching and learning progranuning. All instructors and
students will have very different needs when using such
an environment. Instructors have very different styles of
teaching, and may choose to use only a subset of the
features offered. The features they use in their course will
also depend on the level of the course being taught.

We have noticed that even students in a first year
programming course tend to be at very different skill
levels and consequently the more advanced students will
choose not to use the simple tools that are often
advocated at universities, as they are too limited. For
example, at the University of Victoria, the TextPad tool
[17] is recommended in first year, as it is very simple and
easy to learn for novice programmers. However, such a
tool is clearly very limited and will be rejected by the
more savvy students.

The instructor and the students have to be able to
configure the environment so that it is suitable for the
varied levels of the students. Eclipse offers many
advanced features, such as "code assist" and refactoring,
which may be overwhelming for novice programmers but
desirable for the more advanced student. Customization
of the features in the Eclipse JDT can be achieved in part
through the use of its UI features (natures, perspectives
and views), thus meeting the diverse needs of instructors
and students while supporting changing needs over time
for both groups.

2.2 Pedagogical objectives

2.2.1 Novice programmers should read, write and test
lots of code

It is generally accepted that novice programmers
should have lots of experience reading, writing and
testing programs in order to learn. Unfortunately current
teaching tools tend to place the students (and indeed the
instructors) outside the domain of the development
environment and instead trap them in a Web browser or
in a presentation tool.

The GILD environment should instead position
students and teachers within the development
environment providing easy access to relevant executable
program examples and other course materials.

We are using the existing version control systems in
Eclipse (such as CVS) for storing examples and exercises
selected by the instructor. Students will be able to check
code and assignments in and out using these facilities.
We will also integrate facilities to allow automatic
deployment, submission and marking of assignments.

Such facilities will enable students to do more
programming (which is the best way to learn how to
program).

Over time, a library of code examples, course notes
and tutorials can be created by leveraging and extending
the features of the version control repositories and the
help system in Eclipse.

2.2.2 Present syntactically and semantically correct
code to students

Many novice programmers struggle when learning the
basics of a new programming language. Their knowledge
is very firagile, and seemingly innocent mistakes in an
instructor's snippet of code, can cause students much
grief These mistakes are common when the program
examples and code snippets are taken outside the
development environment. By keeping such examples
grounded within a development enviromnent, the
instructors can more easily correct syntactic mistakes as
they occur in real time. Eclipse provides 'eager parsing'
and 'code assist' features that can also be used to help the
students learn fi-om their own mistakes and may promote
more exploration on the part of the students. We are also
exploring these facilities to see if they lend themselves to
customization. This would allow instructors to tailor
messages to emphasize topics of relevance.

2.2.3 Assign Interactive Exercises in the classroom

Many universities have wired classrooms or
laboratories where each student sits at an individual
computer in a networked environment. In such an
environment, a tool should provide support for the
instructors and students to write, annotate and run code in
real time-passing control from one to another as required.
In addition, students should be able to submit answers
that can be marked automatically and direct questions to
the class for discussion as they arise.

We are also exploring how these objectives can be met
through existing Eclipse plug-ins that support pair
programming such as SanGam [2] and the collaborative
support that is being added to Eclipse.

2.2.4 Provide support for Communication and
Just-in-time Training

Web-based learning tools are in part also popular
because of the collaborative support they provide.
Communication mechanisms such as forums, instant
messaging and e-mail are used fi-equently. Such facilities
take student interaction beyond the classroom and
enhance the learning experiences of the students. Students
can learn firom and help one another when such facilities

CMU/SEI-2003-SR-004 51

are available. Without these, many students express
isolation in a university environment and have only the
instructor to approach when they have problems with
course material. Moreover, interactions with instructors
can be limited to either office hours or to e-mails, which
tend not to be very expressive.

We advocate that the students should be able to
interact with the instructors and other students both in
real-time and asynchronously by asking questions and
receiving replies that are positioned within the context of
their code. When the students and instructor are not co-
located but are working synchronously, collaborative
support features such as simultaneous code editing and
instant messaging will move the interactions between the
student and instructor out of the e-mail world and back
into the development world where these interactions
should take place (see www.groove.net for an example of
such a general-purpose collaborative environment).

As the instructor receives questions about tricky parts
of the assignment, he or she can insert links to related
code examples and other hints that will provide "just-in-
time" training for the more complex exercises.
Furthermore, pair-programming techniques have been
used successfully in many introductory programming
courses [19]. Simultaneous code editing combined with
instant messaging will enable students and the instructor
to collaboratively author code and improve their learning
experiences.

Eclipse already has some infrastructure that we believe
will be useful for helping us provide this support-such as
extensible markers and decorators.

3. GILD'S Adoption

There are many reasons that lead us to believe that
GILD will be adopted. We list these reasons from four
perspectives - that of instructors, students, post-
secondary institutions, and the Eclipse community ~
while recognizing that these claims have yet to be
validated.

3.1 Instructor Perspective:

Repository of course content. Using GILD we hope
to achieve a closer mtegration of course materials (notes,
pictures, animations, etc) with executable program
examples. Typically, course content that one finds on the
Web, or borrows from colleagues, is incomplete or lacks
documentation. In particular, standalone programs are not
often explicitly tied to course material or learning
objectives and it takes a professor contemplating reuse of
the material much time to figure out if the material
matches their needs. By integrating such programs more
closely with course material (linked by learning

objectives) we hope to lead to more reusable content and
programs. The reuse of lecture materials is very attractive
to individual instructors and department administrations.

Fewer tools required when teaching. Such an
environment could alleviate the need for switching and
synchronization of materials between tools and hence
lead to more adoption.

3.2 Student Perspective:

Popularity of Eclipse. Eclipse is already widely used
in industry. Students will likely see the value of learning
it, as they can apply their knowledge later when their
education is finished.

Free. Students have very limited resources so cost will
have a big impact on whether they adopt a tool or not.
Gild will be free when used for academic purposes.

Collaborative support. Many students feel isolated
from other students and indeed from the professor in a
course. We conjecture that collaborative support would
lead to more adoption of this approach.

Interactive learning support. Learning how to
program is a very dynamic activity. As instructors of
these courses, we have noted that the students that write
lots of code and actively engage with the material do
much better than students who take a more passive
approach. Unfortunately, our current tools support the
passive approach rather than a dynamic environment for
code exploration and experiences. We believe students
will embrace the opportunities to do more programming if
they are presented to them in an easy to access maimer.

3.3 Post-Secondary Institution Perspective:

Platform independence. GILD will run on any
platform in which Eclipse runs. This includes Microsoft®
Windows®, Mac OS, and various flavours of UNIX®.
Moreover, GILD will co-exist with other applications on
these machines, as students, faculty and staff use them for
many purposes.

Free. GILD, and all subsequent updates, will be free
to post-secondary institutions. These institutions are
under constant budget constraints, so even a small fee
could be a break point. As well, licensing issues can be
easily dealt with. Students will also be able to use GILD
free of charge on their own machines.

Easy to deploy and maintain. Typically, post-
secondary institutions have limited system personnel and
teaching assistance resources. At University of Victoria,
we currently use TextPad because it is easy to deploy and
maintain. It is also easy to train teaching assistants and
computer consultants on. However, TextPad is limited in
that it is neither a learning nor a teaching environment.

CMU/SEI-2003-SR-004 52

Our goal is to make GILD a tool that is easy to deploy
and maintain, easy to leam and use, and actively supports
various learning and teaching strategies.

3.4 Eclipse Community Perspective:

Community oriented. We will build on top of other
research and expect other research groups may wish to
build on top of our work. We also expect several
communities to flourish around GILD's repository.
Instructors and students will be able to share their content
and their experiences using GILD.

Open source. By making GILD open source we
expect two main outcomes. First, it will be free for
anybody to use. Second, other projects can reuse GILD or
part of it in order to provide ftinctionality or products
beyond the original goals of the project.

Extensible. Our objective is to create an architecture
that permits the customization of GILD to specific
environments, for example, teaching C/C-H-.

4. Adoption Challenges

As in many areas of technologically influenced change,
the adoption challenges for GILD are classic. They
include the following: infrastructural capability, staffing
and training issues, and, perhaps most importantly,
attitudinal differences in the potential adopter community.

Infrastructural capability: in the post-secondary
education community, a committee often determines
changes in technological infrastructure for teaching. Good
teaching/learning rationales have to be provided to these
committees before any technology that "pushes the
infrastructure envelope" is adopted. Typically, those
responsible for day-to-day teaching infrastructure are the
first to recognize the benefits of such upgrades, and are
often looking for "good causes" to support their requests.
Of course, any infrastructural change must be manageable
for the target institutions. Moreover, most post-secondary
institutions have commitments, both formal and informal,
to supporting widely varying technologies within the
same infrastructure. Technologies that need to "take over"
existing infrastructure are often not successfiil in this
milieu. GILD should balance as small an infrastructural
change footprint as possible while providing exceptional
teaching and learning possibilities.

Staffing/training issues: The typical post-secondary
computer help desk is a hive of activity - especially when
assigmnents are due. Staff are usually run off their feet.
Therefore, to be readily adopted, new technology must be
robust enough to run without much intervention by
skilled staff However, in GILD's case, we do want users
to ask questions, but about content, not operation.
Therefore, front-line staff have to be trained to use GILD

and be kept up-to-date on the types of questions to expect
from users. Moreover, GILD will need to be easy to
install and run on users' home machines. We could
anticipate that some demands may be reduced on teaching
assistance staff, as it will be easier for students to help
one another 24/7. As instructors, we have noted a big
decrease in student questions when we provide facilities
to support their interactions outside the classroom.

Attitudinal differences: In most post-secondary
institutions, the resources used to teach a given course are
very much influenced by the preferences of the individual
instructor. Any new learning and teaching technology
would have to easily interface with the majority of the
resources already used by the instructor. Failure to do so
would be a major barrier to adoption. Certainly many
instructors want to improve their teaching methods, but
almost every instructor has already spent a great deal of
time preparing and testing material. The GILD system
must be able to integrate this legacy material and provide
instructors with new ways of using and building on it.

Other challenges: We have yet to discover what other
challenges and barriers to adoption there remain with
respect to the Gild tool. We look forward to feedback at
the Adoption Centric Software Engineering workshop on
people's opinions and insights about our proposed work.
For a tool to be adopted, it must fill a need and provide
advantages that outweigh the disadvantages from
adopting such a tool. Do the needs we identified resonate
with others in software engineering? Does it seem likely
that we can overcome the challenges and reduce the
potential adoption barriers we identified? And are there
other significant challenges that we may face that we
have not yet considered?

5. Conclusions

GILD is an integrated learning and development
environment for programming. Our goals for this
environment are to improve the experiences of students'
leaming and professors' teaching Java programming.
Besides the more general adoption challenges, GILD
faces challenges of providing gains with respect to the
pedagogical needs of both students and teachers. In this
paper we described a project in which we intend to
overcome these adoption challenges by making use of the
powerful infrastructure and large number of plug-ins
available in Eclipse, as well as by thoroughly researching
the pedagogical needs that such an environment provides.

Our project is in its early stages, where our challenges
include the rigorous definition of the technological as
well as pedagogical needs of the intended GILD users.
We are embarking on a big effort to collect requirements
about how an integrated leaming and development
envirormient can be used for teaching programming. We
will consider scenarios of how such a tool could be used

CMU/SEI-2003-SR-004 53

and document these. We are currently striving to provide
technical solutions to the identified needs, as well as
creating a research environment in which the adoption
barriers are well-understood and addressed through
proven research methods. The user requirements will be
defined through iterative prototyping with intended
categories of students and teachers, while the
environment will be user tested following its
development. We also intend to address adoption by
organizing workshops and training with GILD and
observe its use in classrooms for continued improvement
and removal of adoption barriers.

Developed through well-identified research methods,
we expect the GILD project to provide a powerful tool to
convey our research practices to other disciplines and to
advance research in our community. It will foster
continued collaborations within the Eclipse community as
well as among researchers in the area of adoption-centric
software engineering.

References

[I] Slime UMLplugin,
http://www.mvmsoft.de/content/plugins/slime/slime.htm
[2] Pair Programming Piug-in,
http://sourceforge.net/projects/sangam
[3]Eclipse Overview,
http://www.eclipse.org/whitepapers/eclipse-overview.pdf
[4] Eclipse Website: www.eclipse.org
[5] Eclipse perspectives,
http://dev.eclipse.org:8080/help/content/help:/org.eclipse.
platform.doc.user/concepts/concepts-4.htm
[6] Eclipse Views,
http://dev.eclipse.org:8080/help/content/help:/org.eclipse.
platform.doc.user/concepts/concepts-5.htm
[7] Natures,
http://dev.eclipse.org:8080/help/content/help:/org.eclipse.
platform.doc.isv/guide/resAdvnatures.htm
[8] Refactoring,
http://dev.eclipse.org:8080/help/content/help:/org.eclipse.
jdt.doc.user/reference/ref-115.htm
[9] CVS,
http://dev.eclipse.org:8080/help/content/help:/org.eclipse.
platfonn.doc.user/reference/ref-47.htm
[10] Code assist,
http://dev.eclipse.org:8080/help/content/help:/org.eclipse.
jdt.doc.user/reference/ref-143 .htm
[II] Eclipse Markers,
http://dev.eclipse.org:8080/help/content/help:/org.eclipse.
platform.doc.isv/guide/resAdv_markers.htm

[12] Team Decorators,
http://dev.eclipse.org:8080/help/content/help:/org.eclipse.
platform.doc.isv/guide/team_ui_decorators.htm
[13] Help System,
http://dev.eclipse.org:8080/help/content/help:/org.eclipse.
platform.doc.user/tasks/tasks-1 g.htm
[14] DrJava: A lightweight pedagogic environment for
Java, Eric Allen, Robert Cartwright, and Brian Stoler
September 7,2001, presented at SIGCSE 2002
[15] David J. Barnes & Michael KoUing, Objects First
with Java A Practical Introduction using BlueJ
Prentice Hall / Pearson Education, 2003,
ISBN 0-13-044929-6
[16] Eclipse FAQ,
http://www.eclipse.org/eclipse/faq/eclipse-faq.html
[17] TextPad, http://www.textpad.com/
[18] Evaluating the usability of Web-based learning tools,
M.-A. Storey, B. Phillips, M. Maczewski and M. Wang,
Special issue on Evaluation of Learning Technologies in
Higher Education, Guest Editor: Graiime Conole,
Educational Technology & Society 5 (3) 2002.
ISSN 1436-4522
[19] In support of student pair-programming, Laurie
Williams, Richard L. Upchurch , Technical Symposium
on Computer Science Education, Proceedings of the thirty
second SIGCSE technical symposium on Computer
Science Education 2001, Charlotte, North Carolina,
United States
[20] Effective Teaching Behaviors in the College
Classroom. Harry G. Murray in Effective Teaching in
Higher Education: Research and Practice. Editors:
Raymond Perry, John Smart. Agathon Press, New York.
1997, pgs. 171-204
[21] Eclipse Metrics Plug-in,
http://www.teaminabox.co.uk/downloads/metrics/

Trademarks

IBM is a registered trademark of International Business
Machines Corporation in the United States, other
countries, or both.
Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries,
or both.
Microsoft and Windows are registered trademarks of
Microsoft Corporation in the United States, other
countries, or both.
UNIX is a registered trademark of The Open Group in the
United States and other countries.
Other company, product, or service names may be
trademarks or service marks of others.

CMU/SEI-2003-SR-004 54

An Authoring Framework for Live Documents: Collaborative Writing
with Infmite Persistent Annotated Change Tracking (ImPACT)

Adam Murray
University of Ottawa

amurra\@site.uottawa.ca

Jeff Michaud
University of Victoria
jmichaud@uvic.ca

Timothy C. Lethbridge
University of Ottawa
tcl@site.uottawa.ca

Abstract
Live Documents make information manipulation and

retrieval interactive and collaborative for readers.
However, there is little support for authoring of such
documents. In this paper, we lay the groundwork for an
authoring framework, and provide a feature set derived
from social aspects of conversation. Collaborative
Writing with Infinite Persistent Annotated Change
Tracking (ImPACT) allows and support many features for
authoring of live documents including but not limited to
transparent version control management, concurrent
authoring, and advanced visualizations. These features
should be adoptable since they can be built into programs
such as word processors that users are familiar with.

1. Introduction
Why are conversations great? They are dynamic and

fluid; participants' ideas grow, evolve, and flow from one
topic to another. Documents, on the other hand, are not
like that. We believe incorporating the interactivity and
creativity that occurs in conversations into live documents
lays the groundwork for an authoring framework. We
suggest that a feature set that includes collaborative
writing support and infinite persistent aimotated change
tracking are the best way to achieve this.

In this paper, we propose the foundation for an
authoring framework for live documents, as deemed
necessary in [8]. Since live documents are aimed to
achieve a high level of awareness and interactivity, it
seems natural to choose a highly interactive medium that
is infused with awareness to provide guidance for our
framework. We also believe that incorporating aspects of
conversation will help promote the use of live documents.

We take the opportunity to reflect on the origins of
documents and conversations in the social context of the
real world, and to bring this knowledge into the digital
context of live documents. In particular, we note that a
document's persistence is fiindamental to its ability to
acutely convey information. We also note that
conversations have differing strengths rooted in their
dynamic and interactive natures. Wanting the dynamic
nature of conversations with the persistence quality of
documents leads us to establishing the features we believe
necessary for an authoring framework for live documents:
enhanced collaborative authoring support and Infinite
Persistent Annotated Change Tracking (ImPACT).

The remainder of this paper is structured as follows.
In Section 2, we provide the theoretical groundwork for

our authoring framework by exploring and contrasting
elements of documents, live documents, social
translucence and conversations. In Section 3, we
infroduce the essential feature set and requirements for
both collaborative writing and ImPACT while noting the
effects to the current live documents theory. And finally.
Section 4 provides our conclusions and ftiture work.

2. Theoretical Groundwork: From
Documents to Conversations

2.1. Documents
Documents have a history almost as long as the

history of the human race. In this time they have taken
many forms, most recently in a digital manner.
Documents are an instrument for human communication.
They are typically used as a platform for mutual
understanding or consensus of meaning. A document is
created for specific purposes, audiences, and uses.

A document comprises three essential types of
information: data (the essence of the document, the
content and the meaning), format (appearance), and
structure (the parts of the document and the relationships
between them). Structure and format contribute to
absorbing the essence of a document.

Documents are typically persistent, enabling them to
be easily shared, searched, copied, reused, etc. The notion
of persistence is central to our authoring framework. We
argue that a document's evolution history must be
persistent in order to support multiple parties
collaborating in authoring a document.

2.2. Live Documents
A live document aims to improve on conventional

document's ability to convey information to its readers.
Mockus, Hibino, and Graves describe live documents as
interactive documents with embedded, contextual
information visualization components [5]. Their approach
involves extending web pages using simple visualization
components in order to facilitate collaboration among
project members.

Weber et al. [8] greatly expand on the work described
above. The main idea of keeping documentation "in sync"
is discussed, and reinforced with a set of requirements for
live documents. In particular, they introduce the notion of
a live document sensing its context, and adapting its
contents to the recognized environment. The following
are Weber et al's requirements; a live document must:

Rl: Have a state
R2: Manage state automatically

CMU/SEI-2003-SR-004 55

R3: Support reuse
R4: Adapt intelligently to the presentation
R5: Adapt intelligently to the reader
R6: Support advanced visualization
R7: Support contextual search and navigation
R8: Support scripting

These requirements focus upon elements to enrich the
reader's experience. A noted gap in the live document
research is the need for an authoring framework [8],
which we aim to initiate with this work. Weber et al.
suggest that the framework should allow users to use
traditional authoring tools while at the same time allow
meaningful interactions with live documents.

2.3. Social Translucence
An authoring framework for live documents is not

complete without supporting multiple authors; as such, we
believe leveraging technology to incorporate social
aspects of conversation that can improve how authors
interact essential. Enabling multiple authors to participate
in the process of writing a document is a topic within the
research area of computer supported collaborative work.
Theories and tools in this domain have been developed to
enable co-located and remotely located users to
effectively collaborate [1][2][6]. Visualization techniques
are used to make each participant aware of each other's
presence and each other's actions. Conflict management
protocols and access control are put into place to handle
problems and to facilitate cooperation.

To ensure that a collaborative environment enables
interactions possible in face-to-face social situations, the
following attributes must be achieved with the
Vi .ualizations, protocols:

Awareness of other participants
Awareness of the constraints of the chosen protocols
and controls.
Accountability of participants for their actions.

The combination of the enhanced awareness and the
accountability requirement has been described and labeled
"social translucence" by Erickson and Kellogg in [3]. To
adapt their work to our goal of making collaborative
document writing socially transparent, a tailored approach
to awareness is appropriate.

We believe that awareness should be addressed in
three different areas: awareness of presence, awareness of
actions, and awareness of mood/attitude.

Presence: Whether the mode of collaboration is
asynchronous or synchronous, participants should be
made aware of when and where in the document the
other participants are (or have been) interacting.
Actions: Document editing events and others (such
as which references were consulted) can be made
accessible and visualized as needed.
Mood/Attitude: A format is needed to convey the
feedback normally found in facial and body gestures.
A symbolic representation is likely best. We propose
the use of something similar to "emoticons" [7] so

that authors can quickly and efficiently convey their
moods and attitudes towards segments of the
document. We suggest a colouring mechanism,
similar to applying a font, with meanings such as:
o I {mildly / strongly} {agree / disagree} with this
o 1 think this is {well / poorly} expressed
o This is a {key / critical / unimportant} point

When we use the term 'colouring', however, we do not
necessarily mean that actual colours should be used to
indicate mood and attitude; other user interface coding
schemes could also be used.

2.4. Conversations
Social translucence suggests incorporating social

aspects of the real world, such as elements of
conversations, into a digital context, such as our authoring
framework. Thus, in this section we continue our
theoretical groundwork with an examination of interesting
aspects of conversation. Conversations have many
relevant parallels with documents.

First, the primary (and essential) purpose of a
conversation is similar to that of a document: "It is
through conversation that we create, develop, validate,
and share knowledge." [3, p. 67]. Many of our first skills
as children are taught with the aid of conversation,
including the skills of reading and writing.

Second, conversations, like documents, can be highly
structured. The structure of a conversation varies
according to the number of participants, the pattern of
participation (such as the degree of synchrony), the
duration of the discussions and the number of discussions
or topics covered [3].

Conversations, however, have some differences from
documents that can make them a superior format for
exchanging knowledge. Firstly, all aspects of
conversation are directly affected by social factors placed
upon the participants. For instance, some people are
inclined to be polite and not dominate a long conversation
and allow other participants to speak.

The second advantage conversation has over
documents is that their process is dynamic. As a
conversation proceeds, the participants are continuously
interpreting the dialog, verifying that they have been
understood, and offering new contributions where they
feel it is appropriate [8].

Another benefit conversation has is that it produces
continuous feedback on what has been shared between the
participants. Often this takes the form of verbal responses.
However, in situations where the participants are
collocated facial expressions and body language are also
forms (voluntary or involuntary) of feedback. Our idea of
extended emoticons, discussed in the last section, can help
to provide this feedback.

It is important to note, however, that document
persistence, as discussed in Section 2.1, is an advantage
over conversations. Conversations usually only remain in

CMU/SEI-2003-SR-004 56

the memories of the participants and typically the process
of retelling factual information learned in conversation is
prone to mistakes and errors.

2.5. Conversational Live Documents
For our authoring framework to allow live documents

to adapt intelligently to the writer, it must integrate the
strengths of documents and conversations, as discussed in
the previous sub-sections. Doing so will allow live
documents to inherit some of the benefits obtained when
knowledge is exchanged through conversation. At the
time of authoring, operations such as brainstorming,
composition, and editing can all benefit from
conversation.

Live documents can also realize a set of benefits by
applying the concept of persistence to conversation. This
will take the form of a history of the document that will
detail how it has evolved from its inception to its current
state. Being able to discover how an idea (or paragraph, or
title, or diagram) evolved has the potential to provide a
richer understanding of the live document.

The question that now becomes apparent is how can
live documents inherit the advantages of conversation
while still realizing the benefits of persistence? We
believe the former can be achieved by making the process
of editing live documents socially translucent and the
latter by ensuring a system of universal access and infinite
persistent annotated change tracking. We discuss these
essential features for our framework in the next section.

3. Collaborative Writing with Infinite
Persistent Annotated Change Tracking
amPACT)

In our framework a live document must adapt
intelligently to, and facilitate collaboration among, its
authors. The live document maintains and uses knowledge
about the authors and their interactions both with each
other and with the document. Similar conversational
interactions of this type are present in a Wiki [9];
however, our work contributes further as we envision
truly concurrent collaboration and advanced visualization,
among other features, nested in middleware, such as
Microsoft Word.

In this section, we expand on the theoretical
groundwork described in Section 2 and state the essential
features of collaborative writing and ImPACT for our
authoring framework. Some of the features we feel
ImPACT allows or support include: Transparent Version
Control Management, State-based Document Traversal,
Document Variants (Branching), Powerful Search
Capabilities, Undo Across Sessions, Concurrent
Authoring, and Advanced Visualization. Use of our
fi-amework for authoring live documents has the potential
to enrich how live documents fulfill the existing
requirements outlined by Weber et al. in [8]; hence, where

pertinent, we note how features relate to the requirements
we summarized in section 2.2.

3.1 ImPACT
In many simple document-editing environments,

saving or closing a document removes all history of
changes. Modem word processors, such as Microsoft
Word, however, allow the time-stamped tracking of both
changes and annotations (comments) contributed by
muhiple authors. However, if one author wants to 'accept'
or approve the changes of another, he or she can only do
so by removing the record of those changes. Keeping a
complete history even after changes are accepted allows
much more flexibility for everyone interacting with the
evolving document; little research has been performed on
this concept, which we call Infinite Persistent Annotated
Change Tracking (ImPACT). This notion opens up the
possibility for much additional functionality, which we
discuss in the following sub-sections.

3.2 Transparent Version Control Management
Enabling collaborative writing by utilizing a version

control management system is a topic that has been
previously explored. In [1], Byon et al. have established
that a version control system, which records changes in
documents at a fine granularity, is the most beneficial. We
believe supporting the finest level of granularity is
important, though hierarchical decomposition of granular
levels is also useful for a reader. For example, a user can
review changes by character, by sentence, by section, and
so on. The version control management system must not
burden the users; hence, we propose a transparent version
control system. We imagine authors working on personal
documents with their collective modifications being
stored at a master source. We explore the notion of
branching further in the next section.

3.3 State-based Document Traversal
Each time a document is changed, we say it enters a

new state. State-based document traversal would allow
two capabilities: 1) Switching an artifact to a different
state, which may be a previous one, or one reached by a
different path of state transitions (e.g. omitting a
particular set of earlier changes). 2) Interacting with the
history of events (state transitions), including annotations
(e.g. comments) applied to particular events, document
elements or to the events or states themselves.
Furthermore, replaying some path through the document's
state space, e.g. to better understand the reasons certain
changes were made is another interesting feature to be
examined.

3.4 Document Variants (Branching)
In addition to working with copies of a master

document, authors could have the option of working with
their own document variants distinct fi-om the master (or
mainline) branch. A variant represents a distinct set of

CMU/SEI-2003-SR-004 57

states, and a distinct path through those states; the set of
variants, plus the mainline, form a tree or lattice. Variants
allow for multiple writing strategies such as incorporating
versions of a document with rationales, or multiple ways
of expressing different concepts. Authors can edit any of
the branches and merge sub-trees from each (i.e. turning
the tree of editing states into a lattice).

3.5 Powerful Search Capabilities
The environment we envision would permit

sophisticated searches through the document content as
well as through all the meta-information such as
knowledge of authors and their actions, annotations, state
space, version branching, etc. Semi-automatic cross-
referencing document elements and events to other
relevant artifacts (such as emails or meeting notes) is
another useful idea (an idea explored in [4]). This feature
extends the notion of R7 (contextual search and
navigation).

3.6 Undo Across Sessions
Undo simply involves rewinding in a stack-popping

fashion from a current state, back through a path to an
earlier state. The notion of persistent change tracking is
much more powerful since instead of merely providing a
stack, it provides random access to changes. However,
stack-based functions are still extremely useful as a
special case.

3.7 Concurrent Authoring
Other authors/readers should be able to see the

evolution of the changes in real time, but may choose not
to (although constant awareness of who is making
changes should be provided). Chat facilities could be
used to help coordinate efforts and quickly discuss issues
between authors. These conversations can also be
recorded and incorporated into the document's history.

3.8 Advanced Visualization
Tools could display a visualization based upon

historical attributes such as which sections of the
document are new, old, and/or changed most often. Also,
patterns of interaction within the document can be
displayed, and automatically analysed; these patterns are
akin to conversational patterns.

Document readers could display an overview of the
state space (as an FSM, perhaps simplified), or the
conversation sequence (perhaps showing annotations only
with a highly abstract view of the rest of the
document). In either case, readers or authors could access
parts and/or states of the document by clicking on
elements. Also, in such overviews, the recentness of
changes should be visible, in addition to the sections
currently being worked on. Advanced visualizations
directly correspond to R6 from section 2.2.

4. Conclusions
Live documents present an innovative way for

presenting information, and supporting collaborative work
for knowledge workers. We contribute to previous
research with an authoring framework for live documents
supporting features such as collaborative writing and
Infinite Persistent Annotated Change Tracking. We
believe this area of research is highly pertinent, and
requires detailed study. We also believe that live
documents with the features we have described should be
readily adopted by users since we propose merely
enhancing and merging widely used technologies found in
today's word processors, chat programs, etc.

5. References
[1]G.L. Byon, K.H. Chang, N.H. Narayanan, "An

integrated approach to version control management in
computer supported collaborative writing" In
Proceedings of the id** annual conference on
Southeast regional conference, p, 34-43, 1998.

[2] P. Dourish and V. Belloti, "Awareness and
Coordination in Shared Work Spaces" in Proceedings
of the ACM Conference on Computer-Supported
Cooperative Work CSCW92, p 107-114, Toronto,
Canada, 1992.

[3] T. Erickson and W.A. Kellogg. "Social Translucence:
An Approach to Designing Systems that Mesh with
Social Processes." In Transactions on Computer-
Human Interaction. Vol. 7, No. 1, pp 59-83. New
York: ACM Press, 2000.

[4]S. Minneman, et al. A confederation of tools for
capturing and accessing collaborative activity. In the
third ACM International Conference on Multimedia,
p. 523-534,1995.

[5] A. Mockus et al. A Web-based approach to interactive
visualization in context. In Proceedings of the
Working Conference on Advanced Visual Interfaces,
pp. 181-188,2000.

[6] W. Reinhard, J. Schweitzer, and G. Volksen "CSCW
Tools: Concepts and Architectures" in IEEE
Computer, Vol 27, Iss 5, p 28-36, 1994.

[7] K. Rivera, N.J. Cooke, and J.A. Bauhs "The effects of
emotional icons on remote communication" in the
Conference companion on Human factors in
computing systems, p 99-100, Vancouver Canada,
1996.

[8] A. Weber, H. Kienle, H. Muller. 2002. Live
Documents with Contextual, Data-Driven Information
Components, In Proc. of SIGDOC 2002, Toronto,
Canada, Oct. 20-23,2002.

f91 http://www.wiki.nrg/

CMU/SEI-2003-SR-004 58

Evaluating the Eclipse Platform as a Composition Environment

Chris Liier
School of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3430, USA

chl@ics.uci.edu

Abstract

Eclipse is a popular open-source software develop-
ment workbench, and is suitable for the integration of
experimental research tools. It includes a state-of-the-art
plug-in technology, and so it can be considered as a plat-
form for reusable components, or composition environ-
ment. We evaluate the Eclipse platform from this point of
view, and discuss strengths and weaknesses of its plug-in
technology.

1. Introduction

The Eclipse Platform [1,5] is an open-source work-
bench for the integration of software development tools.
Because of its extensibility and its industrial-quality user
interface, Eclipse has been used as a framework for soft-
ware engineering research projects [4,7]. Its advanced
plug-in technology allows the concurrent deployment of a
large number of independently developed components;
this makes Eclipse a composition environment for devel-
opment tools. In previous work, we have surveyed com-
position environments, including software architecture
environments and visual programming environments [6].
In this work, we will evaluate how Eclipse compares when
it is considered as a composition environment, and we will
give recommendations as to how the platform could be
improved in this respect.

Eclipse consists out of a core platform, and numerous
plug-ins. The standard configuration of the Eclipse work-
bench is, indeed, mostly realized as collection of plug-ins.
Each plug-in has a file system directory of its own, in
which its code and a manifest file are located. The mani-
fest is an XML file that provides information about the
plug-in. When the Eclipse platform is started up, all the
plug-in manifests are read, and the associated plug-ins are
hooked up with the system. For example, a plug-in might
define an additional toolbar button, and after the manifest
has been read, this toolbar button will be created. How-
ever, the code of the plug-in is not loaded and executed
until the button is actually pressed. The Eclipse Equinox

project [3] is concerned with exploring new plug-in tech-
nologies for Eclipse; however, it is still in the early plan-
ning stages.

Web directories list over 200 existing Eclipse plug-ins
in varying stages of completion [2]; many of these are
experimental in nature. While most plug-ins are integrated
with other plug-ins only through the common user inter-
face provided by the platform and through the underlying
file system, tighter integi'ation among plug-ins is possible.
The integration technologies provided by Eclipse are in no
way restricted to user interface integration.

2. Strengths of Eclipse

Multi-level architectures. Most plug-in systems only
provide for one level of plug-ins: components can be
plugged into the fi-amework, but there is no generic way to
allow plug-ins to be extended by plug-ins of their own. In
Eclipse, though, much of the environment itself is realized
in the form of plug-ins to the Eclipse core platform; and
many other plug-ins are secondary to those primary plug-
ins. Any plug-in can define extension points that other
plug-ins can connect to. As a consequences, tool architec-
tures can have many levels.

Explicit ports. Each plug-in can define any number of
extension points, to which other plug-ins can connect
themselves. Extension points are specified in the manifest
file of a plug-in. They function as specifications of op-
tional requirements of a component, or requirement ports.
The client (i.e., the component defining the extension
point) declares that it can support any extension that ad-
heres to a given interface. By making extension points
explicit, it is easy to see where and how components may
be plugged into a system.

Self-description. Eclipse manifest files provide descrip-
tion of plug-ins. The information given is partly redundant
to the information in the code, and partly extends it. Re-
dundant information is given for performance optimiza-
tion; it allows the platform to be aware of the essential

CMU/SEI-2003-SR-004 59

properties of a plug-in before it has loaded its Java
classes. Non-redundant information includes the definition
of extension points as requirement ports, version numbers,
and user interface information.

Containers to encapsulate components. Eclipse puts
effort into effectively encapsulating plug-ins from each
other. A plug-in can access another plug-in only if it is
declared as "required" in its manifest. To make this possi-
ble, each Eclipse plug-in has a Java class loader of its
own; this class loader can verify whether an attempted
access to another class is legal according to the manifest.
The class loaders thus realize a container concept - each
component runs in a container of its own that regulates
communication with other components. In this way,
Eclipse manages to avoid unintended or undocumented
dependencies between plug-ins.

3. Weaknesses of Eclipse

Strict requirements are not possible. All Eclipse plug-
ins are optional: they can extend the functionality of exist-
ing components, but are never required. It may be desir-
able, however, to strictly require the presence of certain
components. For example, a word processing component
may require a language library that includes functions
such as hyphenation and spell-checking, which depend on
the natural language employed. A word processor without
such a component does not make much sense; on the other
hand, it should be possible to replace this component in-
dependently from the rest of the word processor. In this
case, the plug-in does not constitute an optional extension
of the system, but a required component that has multiple,
alternative implementations. Eclipse does not support
such required components.

No explicit connectors. The Eclipse plug-in architec-
ture is based on the assumption that each plug-in extends
specific extension points in specific components. It is not
possible to have alternative implementations of the same
functionality, since every component that provides a cer-
tain functionality (i.e., connecting to a given extension
point) will be hooked up to the system. Architectural con-
nectors can be used to mediate between components.
With explicit connectors, it would be possible to have two
plug-ins provide alternative functionalities, and use only
one of them. As an example, a word processor might have
two alternative text layout components: one that is fast
and imprecise, and one that is slow and precise. It makes
no sense to use both layout components at the same time;
instead, one should be chosen over the other. A connector
between the word processor component and one of the
two possible layout components would encapsulate the
selection.

Other benefits of connectors are known from the litera-
ture. For example, connectors can be used to adapt com-
ponents that are not exactly compatible to each other. An
adaptation is a property of the relationship between two
components, and not a property of either one, and thus it
should not be encoded in either of the components, but in
a connector.

Whether strict requirements and connectors should in
fact be added to the Eclipse platform is a question of the
priorities of its users. On the negative side, both of these
features would add some conceptual overhead. However,
we believe that they could be added to the existing plat-
form in a comparatively non-intrusive manner, and with-
out breaking the backwards-compatibility of existing plug-
ins. These features would greatly add to the architectural
expressiveness of the platform, and would enable it to be
used with more diverse configurations of components.

4. Conclusions

The Eclipse Platform is a state-of-the-art plug-in sys-
tem for the domain of software development tools. It goes
beyond most plug-in frameworks in incorporating compo-
nent-based technologies such as ports, run-time contain-
ers, and self-description. This makes it a perfect candidate
for integration of experimental tools, such as those typi-
cally developed at research institutions.

Additional advantages of Eclipse as a platform for re-
search prototypes are its extensible user interface and the
fact that its source code is open. User interface design is
often not a focus in the development of experimental
tools; thus, such tools can benefit greatly from the easily
extensible, industrial-quality graphical user interface of
Eclipse. Open source code has many advantages to re-
searchers; among the most important ones are modifiabil-
ity of the product, increased trust in its correcmess, and
the assurance that the product will not suddenly disappear
from the marketplace.

We have pointed out the strengths and weaknesses of
Eclipse as a composition environment. While we believe
that its strengths make Eclipse a beneficial addition to
most software engineering research projects, extending the
Eclipse platform in the ways suggested may make it even
more powerful.

References

[1] Eclipse Platform Technical Overview.
http://www.eclipse.org/whitepapers/eclipse-
overview.pdf 2001.

CMU/SEI-2003-SR-004 60

[2] Eclipse Plugins. http://eclipse-plugins.2y.net/.
[3] Eclipse Projects: Equinox.

http://www.ecIipse.org/equinox/index.html.
[4] Eclipse Research Community.

http://www.eclipse.org/technology/research.html.
[5] Eclipse.org. http;//www.eclipse.org/.
[6] Liier, C, and van der Hoek, A. Composition Envi-

ronments for Deployable Software Components.
Technical Report 02-18, Dept. of Information and
Computer Science, University of California, Irvine,
2002.

[7] Rayside, D., Litoiu, M., Storey, M.-A., and Best, C.
Integrating Shrimp with the IBM Websphere Studio
Workbench. Proceedings of the 9th NRC/IBM Cen-
tre for Advanced Studies Conference (CASCON'Ol)
Toronto, 2001. 79-93.

CMU/SEI-2003-SR-004 61

Matching Multiple COTS: Can We Achieve a Happy Marriage?

Carina Alves, Anthony Finkelstein
Department of Computer Science

University College London
{calves, a.finkelstein @cs.ucl.ac. uk)

Abstract

In this position paper we investigate the challenges
that arise when selecting multiple COTS. We analyse the
matching between customers requirements and COTS
packages and propose an approach to identify possible
mismatches. In particular, a range of conflicts can arise
from these mismatches. Therefore, effective conflict
management strategies are needed to support the
selection of COTS packages. Finally, we present a
research agenda to address problems of multiple COTS
selection.

1. Introduction

Integrating COTS (Commercial-Off-The-Shelf)
packages instead of developing systems from scratch is a
promising approach to improve the state of the practice
in software engineering [4]. When buying COTS
products, customers can take the advantage of acquiring
products that have been tested many times by other users
with consequent improvement in software quality [16].
Moreover, the system productivity can be increased, as
these packages are currently available in the
marketplace. According to [6], the selection of one
package usually depends on other packages to be
selected in order to support a complete functionality. We
argue that integrating multiple COTS involves many
challenges and risks. In particular, a number of
dependencies and conflicts can occur among the
packages as well as among the package capabilities and
the customer requirements. It is also very likely that
selected packages have to interoperate with bespoke
systems, which involves extra constraints over the
selection process.

In previous works [2][1] we have developed a goal
driven approach to manage conflicts that can occur
between a single package and users requirements. We
have showed that COTS selection demands some form
of inexact matching between features and requirements,
for example: there may be requirements not satisfied by
any available package, requirements satisfied by some
joint packages, requirements partially satisfied, features
not initially requested but that can be helpful, irrelevant

features or even unwanted features. Moreover, there may
be cases where critical requirements cannot be entirely
satisfied without considerable product adaptation and
others where these requirements must be compromised
to accept products limitations. In this context, it is
necessary to engage in an extensive process of
requirements negotiation [14] in which the requirements
of the organization are balanced against the capabilities
of the package.

In this paper we investigate the problems that may
arise when selecting multiple COTS packages. In these
situations, we have to cope with the situation where
several products from different vendors are being
evaluated to satisfy distinct and specific functionalities.
In addition, we have to ensure interoperability and
compatibility between them. Our main hypothesis is that
in order to successfully develop COTS-based systems,
conflicts have to be properly managed. We envisage an
approach where developers can identify conflicts,
analyse it, explore potential resolutions and examine the
associated risks of proposed resolutions.

The remainder of this paper is structured as follows.
In section 2, we describe a mail server selection example
based on [5] to motivate the discussions presented
herein. Section 3 describes some relevant aspects of
COTS evaluation. In Section 4, we describe our
proposal to support the matching process. Section 5
describes the conflict management. Finally, Section 6
discusses some open issues.

2. A Case Study

Organizations need messaging solutions that enable
their employees to maximize collaboration and
communication efficiency. There are a number of
packages available in the market that support an
integrated messaging environment with functionalities
such as:

Messaging-based applications, such as workflow
and information tracking;

Real-time collaboration so that virtual teams can
meet and work together across geographic and
organizational boundaries;

CMU/SEI-2003-SR-004 62

Different options of mail clients from a single
server giving users more flexibility.

Note that, in order to keep competitive advantages,
large vendors usually provide mail packages with quite
similar functionalities. Therefore, selecting the "best"
mail package requires a careful assessment of features
that help differentiating candidate products.

In the following sections, we explore the evaluation
of mail server packages and how they satisfy a set of
requirements. We have chosen the two leading packages,
Microsoft Exchange 2000 [12] and Lotus Notes/Domino
5 [11] to evaluate. In particular, the former is primarily a
messaging system that includes improved application
development capability, while the latter is mainly an
application development environment that includes
robust messaging capability. Therefore, if the main
organization goal is to develop custom collaboration
applications, Notes/Domino might be favored. Note,
however, that as side effect the use of that package is
more pervasive in the organization than Exchange.

3. Evaluating Packages
The first task of any software development is

specifying users requirements. However, there are some
fundamental differences between the traditional
requirements engineering process and the COTS-based
one. When defining requirements for COTS-based
systems, the requirements specification does not need to
be complete. Instead, initial incomplete requirements
can be progressively refined and detailed as soon as
products are identified. High-level needs are identified
using typical elicitation techniques, such as interviews
and use cases. In our goal-driven approach, these needs
are called goals that represent requirements in a higher
level of abstraction (Lamsweerde [10] gives a complete
discussion about goal-driven requirements engineering).
From these goals, possible COTS candidates can be
identified in the marketplace. In our case study, we
consider the following goals that the mail server package
should satisfy:

Ml. Ensure and communicate message delivery.
M2. Ensure fast message delivery.
M3. Support development of collaborative applications.
M4. Support protection against external attacks.
M5. Provide installation and administrative facilities.

The evaluation of each package is performed based
on well how they satisfy the stated goals. Note that goals
have degrees of satisfaction instead of a one-to-one basis
(i.e. satisfied or not). Consider, for example, that one
mail server partially supports the goal Ml "ensure and
communicate message delivery", allowing users to
configure number of delivery retries, but not providing
message delivery notification which is also a desirable

attribute to fully achieve the stated goal. Therefore, it is
necessary to perform a complex matching between goals
and COTS packages.

4. Matching Process

In our approach, the matching between goals and
COTS consists of a compliance-checking mechanism, as
we have to evaluate whether goals are sufficiently
achieved in terms of features. We have proposed a set of
matching patterns to classify the matching in a more
formal way (see [1] for a full discussion).

Fulfill - The matching is complete as the feature fully
satisfies the requested goal.

Differ - This situation is the most complex and
probably the most common case. There is a partial
mapping between goals and features. However, the
feature does not fully satisfy the goal.

Fail - This situation occurs when packages provide
extra features not requested by customers.

Extend - In this case the evaluated products cannot
satisfy a specific goal.

Unknown - Available information is insufficient to
classify the matching.

Note that the matching proposed here does not
necessarily correspond to the veracity of products
capabilities and limitations. We have invented a
matching scenario to explain some important aspects of
how conflicts can arise from mismatches. Table 1 shows
a hypothetic matching between mail server packages and
goals. In particular, mismatches can arise from situations
with patterns differ, fail and extend. However,
mismatching situations do not necessarily originate a
real conflict as some potentially conflicting situations
can be accepted without major consequences. The
challenging task is then to separate simple conflicts from
major ones that can compromise the success of the final
system.

Table 1. Example of matching patterns associating mail
servers features with customer requirements

Goal Matching between goals and
features

Exchange 2000 Lotus/Domino
Ml Fulfill Differ
M2 Differ Differ
M3 Differ Fulfill
M4 Fail Fail
M5 Differ Fail

In order to properly deal with mismatches, we
propose a desirability attribute to be attached to each
goal, representing the importance of a particular goal to
be satisfied. Therefore, evaluators can make well-
justified decisions based on the desirability of goals. We

CMU/SEI-2003-SR-004 63

propose a five level desirability: <5-very high, 4-high, 3-
medium, 2-low, 1-very low>. Suppose, for example, that
goal M4 has desirability 5. During the evaluation
process, we identified that M4 is refined into anti-virus
and anti-spam facilities. However, according to Table 1
both messaging packages fail supporting that
requirement. This is a typical case where a potential
conflict can arise. Another mismatch that can lead to
conflicts occur due to the fact that Lotus/Domino, which
is so far the preferred package,/ai7 in supporting M5. As
Exchange does not fully satisfy M5, evaluators should
explore alternatives to overcome that limitation. In the
next Section we analyse these potential conflicts and
investigate how possible resolutions can be originated.

5. Conflict Management

The conflict management involves the following
processes: understanding the nature of conflicts;
analysing the causes of conflicts and other involved
factors; and finally, exploring potential resolutions that
might be a compromise among these concerns. These
resolutions are generated from the combination of
interacting and interdependent issues.

In order to tackle the conflicts identified due to the
fact that requirements M4 and M5 that are not properly
satisfied by mail server packages, we propose the
following scenario that comprises the selection of the
mail server together with anti-virus, anti-spam and
administrative tools as a way to fully achieve those
requirements (see Figure 1).

Integrated
System

Anti-virus
tool

Mail Server Anti-spam
tool

Administrative
tool

Figure 1. Mail Server Integrated System

We argue that when evaluating several COTS, the
core package should shape the selection of the
peripheral ones. Therefore, the mail servers will
influence the selection of the other tools. Note that such
tools are usually compatible with a specific mail server
package or run under a particular platform. Therefore,

when evaluating one package, developers have to take
into account if other tools are well suited or not.

The evaluation of the peripheral tools should also
start with the definition of goals, for the Anti-virus tool,
the goals include:

VI. Detect and disinfect viruses incoming and outgoing
massages.
V2. Support Continuous update for new virus to be
detected.
V3. Allow multiple scheduled jobs to be configured for
automatic virus scanning.
V4. Allow automatic scan of mailboxes.

The defined goals have to be assessed against the
anti-virus features so that we can verify whether these
goals are met or not. Similarly, we have to identify the
goals to conduct the evaluation of the anti-spam and
administrative packages. We have found in the market
some tools that cover anti-virus and anti-spam
functionalities that might be also considered as selection
choices. In fact, the integrated system will reflect the
combination of products that best meets customers
requirements. On the other hand, evaluators have to
judge if it is feasible acquiring all the peripheral
packages that means extra costs and integration efforts
or accepting mail servers limitations. Therefore, it is
necessary to perform a continuous negotiation process.

When selecting multiple COTS, package features
have to be matched against the goals for that particular
package, which we have illustrated some examples of
conflicts that may arise in case of mismatches.
Moreover, we have also to take into account the
conflicts that may arise during the integration of COTS
packages, where issues like interdependencies between
packages should be examined. Figure 2 illustrates these
interactions, which is the starting point for examining a
number of open questions.

6. Discussion
The problems examined in the previous sections

represent a significant challenge for software engineers.
More precisely the following points might be addressed.

■ Interoperability - One of the key issues in
multiple COTS-based systems is that packages have
to interoperate. Some integration elements can be use
with the purpose of effectively interconnecting COTS
packages. In particular, wrappers may be used for
adapting COTS; these are pieces of code

CMU/SEI-2003-SR-004 64

Mail
Servers

Req anti-
virus

A.
Anti-virus

tools
Administrative

tools
Req admin

tool

Anti-spam
tnnic

Req anti-
spam

Figure 2. Matching interdependencies among different packages as well as between individual COTS features and
customers requirements.

custom built in order to isolate the unwanted
functionalities of the COTS package from other
components of the system. Glue code can also be
used in order to coordinate packages interactions [8].

■ Interdependency - It is very likely to find
interdependencies between COTS packages. For
instance, there may be cases where a package
requires a particular architecture to run properly;
other cases where one package requires other specific
package to achieve the desired capabilities or that one
package does not work together with some packages.
Franch [6] highlights the importance of
characterizing dependencies among COTS
components that can affect the behavior of the
architectural design. We are currently working on
how the selection of a specific package configuration
(i.e. set of packages interconnected) influences the
satisfaction of overall requirements. One potential
technique to apply is visualization to explicit display
interactions between COTS packages.

■ Decision-Making - COTS selection requires a
careful decision-making of multiple criteria. In
particular, selecting the optimal individual package
does not imply the optimal joint selection. The
successful selection should reflect a balancing
between what is wanted and what is possible to meet.
Moreover, users have to be prepared to accept
commitments. A number of quantitative decision-
making methods have been used to support the
selection of COTS, like the AHP [15] that has been

widely applied. However, the main drawback of such
techniques is that they assume a predefined and fixed
set of requirements as evaluation criteria. On the
other hand, we believe that a more qualitative
approach is needed, in which requirements are
evaluated in terms of levels of satisfaction rather than
a Boolean basis. To achieve that, we have proposed a
goal-based fi-amework [1] to support the decision-
making of selecting a single COTS, further work is
required to investigate the multiple COTS decision-
making. We have also investigated the use of
heuristics similar to the ones proposed in [9], to
support the resolution of conflicts.

■ Evolution - COTS packages are continuously
changing to keep competitive advantages. Therefore,
evolution is an unavoidable characteristic of such
systems and must be considered as an intrinsic part of
the development process. In fact, it is not ensured that
new versions of packages will be compatible with
other packages previously integrated. Moreover,
replacing an unsuitable package can resuk in several
inconsistencies and extra expenses to redesign the
system. To cope with that problem, we need some
risk analysis techniques to predict the impact of how
a future package substitution can affect the other
integrated packages.

■ Uncertainty - Because of the uncertain nature
of COTS features, the evaluation of some quality
attributes can be difficult to be measured at the time
packages are being evaluated, for example the level

CMU/SEI-2003-SR-004 65

of interoperability between the package and other
system might only be known after the product has
been integrated. Besides that, some vendors can hide
functions as a way to warrant their intellectual
property, what makes the understanding of packages
capabilities a complicated task to be performed. We
aim at investigating how artificial intelligence
techniques like Bayesian Networks could be applied
to deal with uncertain information of COTS
packages.

Continuous
tradeoffs

Figure 3 - Multiple COTS systems require tradeoffs
among COTS packages, customers requirements and
architectural constraints.

■ Architectural Constraints - Last but not least,
the selection of COTS packages requires
simultaneous tradeoffs among potentially conflicting
issues: COTS packages, customers requirements and
architectural constraints [13] (see Figure 3). Multiple
COTS integration usually brings several inconsistent
architectures frameworks that have to be represented
within a single system. This problem has been
identified as architectural mismatches. Garlan [7] has
identified four categories of mismatches between
conflicting architectural components, they are
assumptions about: the nature of the components, the
nature of the connectors, the global architectural
structure, and the construction process. These
architectural mismatches have been identified as a
fiindamental obstacle to COTS-based development.

Acknowledgements. We would like to give special
thanks to Xavier Franch and Juan Carvallo for the
valuable discussions about the mail server case study.
This work is partially supported by CAPES grant -
Brazil.

Requirements Engineering: Foundation for Software Qualirv.
2002.
[3] Easterbrook, S. Beck, E. Goodlet, J. Plowman, L.
Sharpies, M. Wood, C. "A Survey of Empirical Studies of
Conflict" In S. M. Easterbrook (ed) CSCW: Cooperation or
Conflict? London: Springer-Verlag. 1993.
[4] Finkelstein, A., Spanoudakis, G., Ryan, M., "Software
Package Requirements and Procurement." In S'' International
Workshop on Software Specification and Design. 1996.
[5] Franch, X. Carvalo, J. Defining a Quality Model for Mail
Servers. In 2"'' International Conference on Component-Based
Software Systems.
[6] Franch, X. Maiden, N. "Modelling Component
Dependencies their Inform their Selection" 2"^ International
Conference on Component Based Software Systems. 2003.
[7] Garlan, D. Allen, R. and Ockerbloom, J. "Architectural
Mismatch - Why it is hard to build systems out of existing
parts" Proceedings of the n* International Conference on
Software Engineering, April, 1995.
[8] Iribame, L. Troya, J. Vallecillo, A. "Selecting Software
Components with Multiple Interfaces" Euromicro 2002.
[9] Lamsweede, A. Dairmont, R. Letier, E. "Managing
Conflicts in Goal-Driven Requirements Engineering" IEEE
Transactions on Software Engineering. 24(11). 1998.
[10] Lamsweerde, A. "Goal-Oriented Requirements
Engineering: A Guided Tour." Invited mini-tutorial paper 5""
IEEE International Symposium on Requirements Engineering.
2001.
[11] Lotus Domino. http://www.lotus.com/products/
r5web.nsf/webhome/nr5serverhp-new
[12] Microsoft Exchange Server, http://www.microsoft.com/
exchange.
[13] Ncube, C, Maiden, N. A., "PORE: Procurement-
Oriented Requirements Engineering Method for the
Component-Based Systems Engineering Development
Paradigm." In International Workshop on Component-Based
Software Engineering. 1999.
[14] Robinson, W. "Negotiation Behaviour During
Requirements Specification" 12''' Conference on Software
Engineering. 1990.
[15] Saaty, T. "The Analytic Hierarchy Process" New York:
McGraw-Hill. 1990.
[16] Wallnau, K. Hissam, S. Seacord, R. "Building Systems
from Commercial Components" SEI Series in Software
Engineering. Addison Wesley. 2002.

10. References

[1] Alves, C. Finkelstein, A. "A Goal Driven Approach to
Manage Conflicts in COTS Selection" In International
Journal on Software Engineering and Knowledge
Engineering, (in submission).
[2] Alves, C. Finkelstein, A. "Negotiating Requirements for
COTS Selection" In 8"" International Workshop on

CMU/SEI-2003-SR-004 66

Integrating a Tool into Multiple Different IDEs

Lutz Prechelt and Matthias Peter
abaXXTechnology AG, Stuttgart

lutz.prechelt\matthias.peter@abaxx.de

Abstract

abaXX Technology produces component-based
platform products that help in the construction of Web-
based systems, in particular process portals, using Java2
Enterprise Edition (J2EE) technology. Most parts of these
products are API-based and hence require support by
appropriate construction tools. Much support is available
in leading J2EE IDEs, but some specialized tools have to
be provided in addition. Since the products are platform-
independent, the tools should work in many different
IDEs, too.

This position paper shortly describes the issues
encountered in designing one of these tools in such a way
that it is portable to both Eclipse 2.0 and IntellU IDEA
3.0 (andpossibly others as well).

1. The starting point: Web UI Framework,
VaniUa Portal, PortalBuilder

This section describes the context of the parts.xml
editor tool discussed in the paper. However, most of the
issues can be understood even if you skip this section.

The Web UI Framework is one of abaXX' J2EE
component products. It consists of the base framework
(similar to Jakarta Struts [2]) for implementing a Model-
View-Controller design style, a powerful tag library, a
Parts framework for hierarchically modular UI
construction and configuration, and the corresponding
runtime system.

The Parts framework defines the notion of Part, a
fragment of a UI dialog page having its own view,
controller, and model. Parts appear to be somewhat
similar to Portlets, but in fact they are much more
Ughtweight, can be arbitrarily nested by using containers
(CompositePart) with dynamically controlled layout, and
can have their look-and-feel be centrally modified by
Decorators.

The UI structure of a portal is defined in a file called
parts.xml; see an excerpt in Figure 6.

Along with the Web UI Framework we ship the Vanilla
Portal, an basic portal frame containing a few generic

reusable Parts and predefining the directory structure,
naming conventions etc., thus making setting up a new
portal development project quick and easy.

On top of the Vanilla Portal comes the third major
element, the PortalBuilder: an application for interactively
modifying a live portal on the Parts level. The whole
portal (see Figure 1) is switched into 'edit mode' (see
Figure 2) and then Parts can be introduced, removed,
moved, and (re)configured. One can even introduce new
(not yet implemented) Parts, will immediately get to see a
dummy representation, and can then add actual views and
controllers incrementally. During all of these activities,
the fiill functionality of the portal proper is always visible
and available for use.

2. The tool and the integration goals

During the implementation phase of a Part (writing the
view JSP, controller class, and model bean), one would
not normally want to work with the PortalBuilder, but
rather with an IDE. Nevertheless, some of the
functionality of the PortalBuilder is relevant then, too -
namely, entering, reviewing, and modifying parts.xml
parameters for the given Part, its parent Part (container),
and children Parts, if any.

For simplifying this task, we offer a specialized tool,
the parts.xml editor (see Figure 4) that allows for
generating and editing these entries and that ensures their
syntactic and semantic integrity. For maximum benefit,
the parts.xml editor needs to be integrated into the IDE.

The following integration between parts.xml editor and
IDE would be nice:

(1) User starts the editor from within the IDE.
(2) Editor recognizes which parts.xml is relevant and

where to find it; editor loads and saves it.
(3) Editor understands where to find any resource

mentioned in the parts.xml (JSP, controller class,
model class, decorator, layout, etc.); can make the
IDE load and show/edit any of these.

(4) Editor can create lists of candidate resources in
any of the various categories from (3) and offer
them in selection lists.

CMU/SEI-2003-SR-004 67

(5) Editor makes semantic checks of internal
consistency of Parts descriptions. (Note that this
does not really require integration.)

(6) Editor makes semantic checks of consistency
between Part description and the resources
mentioned therein, such as (in increasing order of
complexity): JSP exists, controller class exists,
controller class is indeed a controller class, all
events declared in Part description are fired
somewhere, etc.

So far, we have implemented (1), (2), (3), (5), and
some of (4), but only basic elements of (6).

3. Integration issues

We have currently implemented the parts.xml editor
for three different contexts:

• The IntelliJ IDEA 3.0 IDE ([4], see Figure 3)
• The Eclipse 2.0 IDE ([3], see Figure 4)
• The abaXX Workflow Modeler 3.2 tool (see

Figure 5)
The Workflow Modeler is an editor that manipulates

process descriptions for the abaXX Workflow Engine, a
process execution component that integrates process
control logic, calls to business logic, and GUI page flow.

3.1. GUI issues

The GUIs of different IDEs are neither technically nor
conceptually identical (or sufficiently similar).

For example, the parts.xml editor tool is programmed
in Java Swing (Java Foundation Classes), which is fine for
IntelliJ IDEA, because Swing is both its native technical
GUI platform as well as its standard look and feel. The
same is true for the Workflow Modeler.

For Eclipse, however, Swing is foreign: Eclipse,
although also based on Java, is built using a special,
native GUI library. While the look-and-feel issues arising
out of this can be overcome, at least for a tool as simple as
the parts.xml editor, the technical integration becomes a
problem: The parts.xml editor cannot easily be shown as a
fully integrated subwindow of an Eclipse session, but
appears as a separate window on top.

For more advanced tools, these problems will become
worse.

3.2. Semantic integration issues

The repository structure and services of different IDEs
are very different.

With respect to the integration wash list from Section 2,
this means that all functions that require advanced access

to the IDEs fact base are difficult to design in a portable
fashion. They essentially have to be re-done for each new
IDE.

For example, while the file-based integration fimctions
such as most of (3) and simplified versions of (4) can be
ported reasonably well, the advanced parts of (6) dig so
deep into the IDEs internal model of Java programs that
their design will invariably be very different for different
IDEs. In some cases (IDEA may be one of them) it may
even be impossible to provide this integration, because
too little of the respective functionality of the IDE is
documented and exposed to the tool developer.

3.3. Conceptual issues

Underlying all of the above technicalities is a much
more fundamental problem. Different IDEs approach their
problem in conceptually different ways.

For instance, while IntelliJ IDEA follows mostly a
rather pragmatic approach, working in a file-level, text-
based manner wherever possible, other tools that are more
inclined towards a Modeling/CASE Tool kind of
approach will not just have different technical
mechanisms inside, but will require an add-on tool to have
a totally different form and approach in order to get a
good conceptual fit. In the case of the parts.xml editor this
could mean for instance to have visual representation (and
direct manipulation) of the inheritance relationships and
event relationships between parts, rather than just a parts
tree and attribute table.

4. Conclusion

Integrating a development tool tightly and adequately
into more than one kind of IDE is a difficult task. The
standardization that would be required for making this
task easier is not currently in place, neither on a technical
level (APIs, GUI look, basic GUI feel), nor, much more
importantly, on a conceptual level (repository structure,
service architecture, overall presentation and operation
styles).

5. References

[1] abaXX Technology AG, "abaXX.components",
http://wym.abaxx. com.

[2] Apache Software Foundation, "Jakarta Struts",
http://Jakarta.apache. org/struts/index.html.

[3] eclipse.org, "Eclipse", http://www.eclipse.org.
[4] JetBrains Inc., "IntelliJ IDEA",
http://www. intellij.com/idea/

CMU/SEI-2003-SR-004 68

^ Vdnitid Portal Desktop - Microsoft Internet Explorer pr »mmi'immmim

J>i«M««l€lhtlp/;iocatiostB060A'arila_test/-^<pgt=TestExamples _ Z f^W^

Figure 1: A small portal with 5 Parts: banner, menubar, empty menu, login, and a mini-application

IS VdFiilla - Port.ilUuilder - Microsoft Internet Lxpio BB uai 'SfES

i iffii«sp'i»^w»at*yaw>^<g»i^^ ^Pp-^gmcilWrnet >ftS

Figure 2: The same portal in PortalBuilder mode. The PartsBrowser shows some of the portal's Parts hierarchy.

CMU/SE1-2003-SR-004 69

lipM- works>.v.r>nlMxxJooh4Mrl%q.]llerv\src\abax)<,web^p»K\gal«iv\ii\PartRepo_.HWEI
D:\eclpse\worltspace\aba>

Figure 3: The parts.xml editor tool window within the IntelliJ IDEA IDE

Figure 4: The parts.xml editor in its Eclipse version (where it is a separate window)

CMU/SEI-2003-SR-004 70

MmwjBiy.wiAiJiFJMiiiJjiiiujmi.iJ!iuiJj.i;miJU,B.iJ.iiJ]mk >t \src \MvTestProce5s.wtm

Figure 5: The parts.xml editor as a plugin to the abaXX Worflow Modeler.

<desk name="Examples">
<theme>

<styles>
.portal-content, .menubar a.selected { background-color: #ccccee; }
.portal-banner { color: #aaaaff; }

</styles>
</theme>
<content layout="tabbed-switch" visual="abaxx.web.parts.CompositePart">

<part name="deskedit" omit="true" />
<part name="AddressList" controller="abaxx.web.aspects.test.AddressController"

model="Test .AddressList" url = "/WEB-INF/classeB/abaxx/web/aspectE/tesc/AddressList.jsp"
decorator="caption">

<event name="pick" target="DisplayAddress" />
<event name="new" target="EditAddress>create" type="redirect" />
<event name="delete" />
<event name="reset" />

</part>
<part name="DisplayAddress" controller="abaxx.web.aspects.test.AddressController"

niodel= "Test .Address" url = "/WEB-lNF/classes/abaxx/web/aspects/test/DisplayAddresE.jsp"
decorator="caption">

<event name="edit" target="EditAddress" />
<event name="back" target="AddressList" flags="populate,validate" />

</part>
 [■■■] .

Figure 6: Excerpt from the parts.xml file

CMU/SEI-2003-SR-004 71

Hosted Services for Advanced V&V Technologies:
An Approach to Achieving Adoption vt'ithout the Woes of Usage*

Position Paper for ACSE 2003

Lawrence Z. Markosian
QSS Group, Inc.

lzmarkosian@email.arc.nasa.gov

Owen O'Malley
QSS Group, Inc.

owen @ email .arc .nasa. gov

John Penix
NASA Ames Research Center

John.J.Penix@nasa.gov

William A. Brew

Abstract

Attempts to achieve widespread use of software
verification tools have been notably unsuccessful. Even
"straightforward", classic, and potentially effective
verification tools such as lint-like tools face limits on
their acceptance. These limits are imposed by the
expertise required for applying the tools and interpreting
the results, the high false positive rate of many
verification tools, and the need to integrate the tools into
development environments. The barriers are even greater
for more complex advanced technologies such as model
checking.

Web-hosted services for advanced verification
technologies may mitigate these problems by centralizing
tool expertise.

The possible benefits of this approach include
eliminating the need for software developer expertise in
tool application and results filtering, and improving
integration with other development tools.

1. Introduction

Software engineering tool developers face numerous
obstacles in getting their tools adopted. Some of these
obstacles are listed in the Call for Papers for this
Workshop. Others include the cost of the infi-astructure for
maintaining and applying the tools, and the difficulty of
interpreting and filtering the results. Integration with
other tools pose additional barriers. The approaches
suggested in the CFP represent ways to address these
problems.

Our focus in this paper is on adoption of verification
tools, specifically, program analysis and simulation tools
such as static analyzers and model checkers. These tools
are likely to require significant expertise in their use, for
reasons that we discuss in the next section. In addition,
these tools generally require a greater effort to integrate
than "front end" tools such as design tools and compilers.
Therefore, for verification tools, a more radical approach
may be needed to ensure adoption.

The research on model checking described in this report was performed at NASA Ames Research Center's Automated Software Engineering group and
is fiinded by NASA's Engineering for Complex Systems program. The experience reported regarding other technologies and tools is based on the
authors' professional experience developing and applying them in a variety of organizations.

CMU/SEI-2003-SR-004 72

Hosted application service providers may provide an
effective way, in appropriate markets, to dramatically
lower these acceptance barriers.

2. The problem

The Intelligent Software Engineering Tools team at
NASA Ames Research Center (ARC) develops advanced
verification tools based on source code model checking
technology[l], an ongoing research area in the Automated
Software Engineering group at ARC. Our target languages
are Java, C and C++. This position paper is based in part
on our current work and in part on our previous
experience at NASA and elsewhere building or applying a
variety of commercial verification tools. These tools
include PolySpace[2], Flexelint[3], and Y2K defect
detection/ remediation tools as well as research prototypes
such as Java PathFinder[l] and ESC/Java[4]. Effective
use of many of these tools faces similar problems.

In our experience, specialized expertise is required for
effective use and adoption of verification tools.
Integration issues also impede adoption.

2.1 Kinds of knowledge required for effective use
of verification tools

Effective use of verification tools includes detection of
real defects; a low false-positive rate; the ability to triage
reported defects; and a high confidence level in the
results. Effective use of model checking tools requires a
mental model of their operation to interpret the output,
tune the model checker's operation, and identify the root
cause of defects that it reports. This knowledge is largely
application-independent.

In addition to a mental model of tool operation,
effective use for our target languages, C, C++ and Java,
may require expert knowledge of the semantics of
language operators in order to evaluate a defect report. In
our experience, C/C++ programmers may not have the
level of understanding of language semantics necessary to
interpret tool output. As is the case with tool expertise,
this knowledge is application-independent.

Effective use of verification tools may also require
application-specific knowledge. Static analyzers may be
unable to conclude that an operation may produce an
exception, because the range of possible values of
variables cannot be derived from the source code. This
knowledge is often provided in the form of formal
specifications or design information.

All of these considerations are prior to root cause
analysis, which imposes further demands on the user, if
the defect reports are to be actionable. Once the defect is
well-understood, confirmed as real, with high confidence.

then application-specific knowledge may be important in
the remediation task.

Our experience with defect detection tools based on
static analysis suggests that some of these problem exist
even for lint-like tools, which have been available for 20+
years. These tools have such a high false positive rate that
programmers are reluctant to apply them: they cannot
filter the output efficiently, nor are they motivated to
spend time on what they view as "busy work".

2.2 Integration of verification tools

Effective use of verification tools also requires that the
tools be well-integrated into the development
environment. Static analysis tools can, in principle, be run
at compile or build time. Thus they hold forth the promise
of early defect detection if they are well integrated into the
development process.

Verification tools generally require a greater effort to
integrate than "front end" tools such as design tools and
compilers, since the verification tools must report defects
in a way that supports in-the-loop evaluation and
remediation or other action.

Tools that have a high false positive rate, if they are to
be integrated at all, require a well-defined filtering process
—some combination of automated post-processing and
human filtering. Our experience is that developing an
efficient filtering process requires extensive experience
with the tool and its use in a particular development
environment; the distillation of this experience must be
retained as enterprise knowledge in a training system
because of the high turnover rate of reviewer personnel.

Advanced verification tools themselves are likely to be
"niche market" tools, since their range of applicability is
limited, and hence the resources available for integration
and maintenance will be limited compared to, for
example, the resources available for integrating and
maintaining a new compiler.

3. Hosted Verification Services

We have argued that effective use of verification tools
requires three kinds of knowledge: a mental model of the
tool's operation; knowledge of the semantics of the target
language; and application-specific knowledge. To the
degree that the first two kinds of knowledge dominate, it
makes sense to centralize that expertise and even to hide it
from users. One way to do this is to provide web-hosted
verification services.

Usage scenario. In one scenario for hosted
verification services, a developer checks her successfully-
compiled source files into the host server's configuration
management system (CMS). The nightly build is run on
the development team's network, which accesses the files

CMU/SEI-2003-SR-004 73

from the host's CMS. The build transcript is written to the
CMS server. Following the build, a configuration analysis
tool, which is resident on a server at the hosting service,
analyzes the build transcript to determine what files need
to be analyzed and how (what compiler and compilation
options were used, etc.) Some of the options specific to
the verifier have been preset by the service provider's tool
experts based on prior customer input about the
application or about the current build. These options may
include decisions about what defects are of interest to the
customer, how much explanation of the defects is to be
provided, and the highest priority modules for
verification.

The verification tools use the configuration analysis
data to initialize the verification options. Then they
proceed to analyze the application. Tool operation is
monitored by the service provider and human
interventions are made as necessary—for example, to
make tradeoffs between runtime and completeness of the
analysis, or to focus on specific execution paths. The
verification tools may need to be run repeatedly, with
different settings, to obtain the desired results.
Verification output is then filtered by an automated
filtering system and may be presented to human reviewers
for final filtering. The human-filtered output is directed to
other facilities that are provided at the hosting site, such as
an issue tracking system and test case generator. Ideally
the data are available to the user when she logs on in the
morning.

Commercial models. The model for this scenario is
not far from existing commercial application service
providers (ASPs) of software development tools and
services.

For example, DevX and Merant provide hosted issue
management tools and services. VA Software and
Collabnet provide tools and services for hosted
configuration management and collaborative develop-
ment. SoftGear focuses on testing. Odier organizations
provide source code inspection services. The degree of
user access to the "tools", and what capabilities are
provided by ASPs, varies. In some cases the user directly
accesses a tool (such as a configuration management
system) using a browser interface, and the services include
maintenance of the tools and the platform. In other cases
the user may simply make submissions (for example, an
application to be tested) and later accesses a database for
the results—the ASP provides a service based on a
combination of tools and human expertise.

Lessons from Y2K verification. Our experience with
the Y2K problem suggests the effectiveness of a service-
based approach to verification. Solving the Y2K problem
for Cobol required extensive program analysis, as well as
the ability to understand specific Y2K errors and
remediate them systematically. This was beyond the
capability of most Cobol programmers, particularly given

the time constraints and the massive volume of source
code to be examined. Advanced program analysis tools
based on alias analysis and program slicing largely
automated the analysis, but required a good mental model
on the part of the user in order to tune their operation and
interpret the results. Our experience was that training
Cobol programmers in the required concepts, such as
parsing, alias analysis, reaching definitions, evidence and
confidence levels, built-in heuristics, and remediation
strategies was broadly ineffective. Intensive process and
tool training in a "factory" enabled a high throughput
whether the goal was independent verification or error
detection and remediation.

Application-specific knowledge was largely
unnecessary^: the most important consideration was
obtaining a complete, consistent set of source and copy
books (include files).

4. Success and Risk Factors

We are not advocating hosted verification as a
panacea. We have already indicated the basic precondition
for hosted verification services—dominance of the
importance of tool knowledge over application
knowledge, or the superior ability of the tool to acquire
application knowledge. Specific additional factors within
NASA enhance the prospects for hosted verification
services there. There are risks also, both within NASA
and in a broader context.

Intellectual property & security issues. Commer-
cially, intellectual property issues coupled with security
concerns produce a reluctance in some markets to allow
source code offsite. This consideration is largely absent
within NASA; there are security issues (such as ITAR) but
these are addressable through existing procedures. And, as
we discuss below, NASA already has an internal software
verification facility.

Need for verification. In addition, there is a recog-
nition wathin NASA that software complexity, particularly
for autonomous vehicles, is increasing rapidly, and that
advanced software V&V are enabling technologies for
autonomous space exploration. NASA ARC has for years
been conducting research in software V&V as well as
other approaches for reducing defects in autonomous
applications. ARC does research and some tool
development; it does not provide verification services.

However, NASA does have an organization dedicated
to V&V, the Independent Verification and Validation

More accurately, Y2K defect analysis and remediation
required extensive application knowledge, but this never
favored the application expert: the toolset became the
application expert in the course of analyzing the
application.

CMU/SEI-2003-SR-004
74

Facility. Its charter includes "identifying system and
software risks to improve software quality and safety".
We view the IV&V Facility as is a possible natural entry
point for hosting verification services within NASA.

Support for software development process
improvement. There is also an increasing recognition
within NASA that detailed data and metrics should be
collected on high-assurance software engineering projects.
A hosted development environment, with specialized
V&V tools, provides a platform for obtaining such data
and evaluating the effectiveness of the development
process, including the individual V&V tools. It offers the
possibility of obtaining fine-grained enough data on
individual V&V tools that NASA can model the return on
investment of each tool when used at various points in the
development lifecycle and feed this data into risk
assessment tools such as [6].

Integration with otlier tools. The same environment
that hosts V&V services should also host other
development tools—at the very least, CMS and issue
tracking tools. This does not completely address the
integration issues mentioned earlier, since builds and
testing, for example, are usually not conducted in the
hosting environment, and there is a wide range of
development environments. However, hosting CMS and
issue tracking may provide a synergistic environment—
the CMS can provide a complete, consistent configuration
for verification; and verification output can be directed to
the issue tracking system and possibly the test
environment. An integration risk is that there is a large
range of development environments, and it may be
difficult to integrate closely with the build process.

Turn-around time. Integration into the development
environment also suggests that the verification results are
available quickly enough to be actionable before the next
build. Human intervention in the verification process,
which we have argued is necessary to apply verification
tools and filter the results, may preclude a rapid enough
response—for example, when builds are done on a daily
basis. One strategy for mitigating this risk is to provide
several levels of verification, where the "deeper" (and
more time-consuming) verification levels are reserved for
high-assurance applications that are more tolerant of turn-
around time. Another strategy is to optimize the
verification insertion points in the customer's
development cycle—for example, with respect to
milestones such as start of integration testing,
certification, alpha and beta release, etc. Incremental
verification should also improve turnaround time.

One of our research goals is to determine the right
lifecycle insertion points for verification tools, especially
when several verification and validation tools are used
together.

Incremental verification. A related risk is inability to
support "incremental" verification on successive builds.

The human effort required for verification should be
approximately proportional to the amount of "new" code.
Certainly this is the customer's perception. A combination
of engineering and research may be needed to address this
for large applications with frequent builds.

5. Conclusion

We need to understand how the verification tools we
are developing at ARC can overcome barriers to
deployment within NASA, and how they are best
integrated into the development process.

Web-hosted verification services may provide an
opportunity for verification technology to gain acceptance
in NASA and elsewhere. One of the barriers to the use of
verification tools is the expertise required to apply them
effectively, which dominates the application expertise
required on the part of the user.

Benefits of web-hosted verification services may also
include better integration into the development lifecycle;
better integration with other software development tools;
and the ability to obtain fine-grained performance data for
evaluating the effectiveness of particular tools in various
contexts.

Risks include difficulty of providing application-
specific knowledge to assist the tool; inability of the
hosting site to model the application development site;
inadequate turn-around time; and the inability to support
incremental verification of large applications. In the
commercial environment, intellectual property and
security concerns may limit acceptance.

References
[1] W. Visser, K. Havelund, G. Brat, S. Park. "Model

Checking Programs", Proceedings of the I5th
International Conference on Automated Software
Engineering (ASE), Grenoble, France, September 2000.
[2] PolySpace is a trademark of PolySpace, Inc.
http://www.polyspace.com
[3] Flexelint is a trademark of Gimpel Software, Inc.
http://www.gimpel.com/
[4] http://research.compaq.com/SRC/esc/
[5] CodeWizard is a trademark of Parasoft, Inc.
http://www.parasoft.com
[6] Raffo, D., and Kellner, M. I., "Predicting the Impact
of Potential Process Changes: A Quantitative Approach to
Process Modeling," Elements of Software Process
Assessment and Improvement, IEEE Computer Society
Press, 1999
[7] Cousot, P. "Abstract Interpretation: Achievements and
Perspectives."
http://www.polyspace.com/docs/Abstract_Interpretation_
P_Cousot.pdf

CMU/SEI-2003-SR-004 75

An experiment in facilitating adoption of an integrated software development
environment

Lech Krzanik and Mikko Nurmi
University ofOulu, Department of Information Processing Science, Oulu, Finland

Lech.Krzanik@oulu.fi

Abstract

An integrated software development environment is
considered that supports processes of feasibility analysis,
requirements engineering, and design, for selected
application domains such as user interface development
for consumer products. We improve adoption of the
environment in three ways. First, we improve the
environment's user interface by adding common COTS
products such as office suites or imaging packages using
common middleware. Next we provide feedback to users'
decisions which is referring to past experience on similar
projects. Finally, we simplify the underlying software
models by assuming that the target software is developed
incrementally with frequent delivery steps - so that
simple local approximations are possible. The
environment's user interface is simpler and more
intuitive, and understandability of the produced artifacts
improved. The tools can use straightforward software
representations with commonsense operations on them.
To assure that such a setting is valid and to minimize
wrong developer decisions caused by oversimplified
modes of interaction with the tools we additionally
introduce mechanisms for monitoring validity of
developers' decisions. A typical developer's reaction to
the warning messages would be selecting an alternative
requirement or design decision, or decreasing the
incremental delivery step for the software process.

Keywords: Software tool extensions, COTS, tool
adoption, end-user participative development,
incremental delivery.'

1. Introduction

A new practice is adopted by a group (e.g., an
organizational unit) or an individual when it is routinely
used, e.g., for the business purpose. On the commitment

This is an extended and changed version of the paper
presented at the Workshop on Adoption-Centric
Software Engineering ACSE'2003.

curve [2] adoption and institutionalization is preceded by
contact, awareness, understanding, and trial use. All
these stages can be facilitated by a transparent, common-
sense access to the practice implemented with simple
software tool extensions to commonly used products.
Such a solution can be shared by many stakeholders
participating in the practice maturation - the entire
process from initial idea to the widespread, self-
optimized use. This is particularly important as most
technology developers do not explicitly define their
stakeholders, much less obtain their commitment. The
approach is likely to support the facilitator factors of
adoption [3], such as prior positive experience,
incremental change, and clear need. On the other hand
the approach is likely to neutralize inhibitors such as high
cost, psychological hurdles, and extensive training.

An integrated software development environment
(IDE) is considered that supports processes of feasibility
analysis, requirements engineering, and design, for
selected application domains such as user interface (UI)
development for consumer products. We improve
adoption of the environment in three ways. First, we
improve the environment's user interface by adding
common COTS products such as office suites or imaging
packages using common middleware. Next we provide
feedback to users' decisions which is referring to past
experience on similar projects. Finally, we simplify the
underlying software models by assuming that the target
software is developed incrementally with frequent
delivery steps - so that simple local approximations are
possible. The environment's user interface is simpler and
more intuitive, and understandability of the produced
artifacts improved. The tools can use straightforward
software representations with commonsense operations
on them. To assure that such a setting is valid and to
minimize wrong developer decisions caused by
oversimplified modes of interaction with the tools we
additionally introduce mechanisms for monitoring
validity of developers' decisions. A typical developer's
reaction to the warning messages would be selecting an
alternative requirement or design decision, or decreasing
the incremental delivery step for the software process.

CMU/SEI-2003-SR-CX)4 76

The above research resulted from the following
practical situation. A company A provided for company
B the first version of a specialized IDE, oriented toward
component-oriented embedded UI software engineering
for consumer products. Introduction of the system in B
took longer than expected and it didn't reach the
expected level of use. It was then decided that in parallel
with the work on Version 2, a Release IB would be
developed addressing specially the adoption issue from
the technical side. Interviews were conducted with
current and potential users, which resulted in a set of
proposed solutions:

1. Address major important user groups first
2. Address major important practices and issues

first:
- Simplify the developer's tasks

addressed: Convert the overall
development process into a product
line-type of development [5], and
consider first the application
engineering only that performs
assembly from available components

- Focus on application quality and cost
3. Introduce more intuitive user interaction with

the tools
- Intuitive interaction in nominal

situations, including evaluating user
decisions and explaining development
state transitions

- Guidance in exceptional situations,
including evaluations of user decisions
and explaining the reasons for entering
an exception

4. Exploit common end-user COTS software with
familiar user interfaces

5. Provide references to other uses of same
software components. Make references to
experience data about previous or other similar
systems and components

6. Use analogies on how similar tasks are
performed in non-software domains

- Component assembly for various
consumer product lines.

These recommendations were selectively integrated
into the Release IB development plan with the
characteristics described above. Release IB had schedule
of several months, and resources negotiable and design
agreed with Version 2. Results to be later refined within
Version 2. To create adequate user feedback, this was an
end-user delivery, not a prototype. The incremental
technology used was mostly COTS software for faster
and less expensive deployment. It included an office suite
and smart virtual modeling COTS software as well as
databases, EJB server, etc. components.

Generally Release IB can be characterized as follows:
• End-user participative
• Incremental delivery of software
• Emphasizing the role of nonfunctional

requirements
• Including developer decision validity monitoring

based on various measures of tolerances,
uncertainties, risks, etc., of requirements and
technology (components)

• An opportunistic approach, not necessarily
globally optimal

• It is estimated that the tool can provide valuable
information to stakeholders and support their
decisions in early requirements engineering
stages.

For larger delivery steps the validity monitoring
system may indicate uncertainty or risk evaluations at
unacceptable level, and possibly return a warning of
invalid results, or may indicate no solution at all. The
transparent, common-sense management of
nonfunctional attributes (properties) facilitates adequate
user responses, e.g., regarding selection of an alternative
requirements or design decision (e.g., another
component), or decreasing the incremental delivery step.

2. An example tool

Muhi-stakeholder distributed systems are
characterized with personalized and time-dependent
views of stakeholder requirements. In such systems
validation becomes problematic because individual
stakeholders tend to be only aware of their local
operation. The proposed tool is intended to support
multi-stakeholder-participative requirements engineering.
End-user understandability of local goal statements is as
important as the precision of global validation of the
specifications.

The example tool extends a web browser and uses a
number of common middleware technologies (for
instance, COM to support user interface implementation
and EJB on the server side with component repositories).
It addresses configuring new versions and variants of an
existing product for new stakeholders. The requirements
process makes use of a conventional function-and-
attribute approach. Various usability engineering
techniques are used [6, 7]. It is assumed that the
differences between the stakeholders' system
requirements are small or the products are developed
incrementally with small incremental steps. A procedure
is introduced for controlling the extent of "delivery
deltas" between the stakeholders or the successive
deliveries. The build process is component-oriented.
Reuse of previously applied components - locally or for
other stakeholders and systems - is preferred. A dedicated

CMU/SEI-2003-SR-004 77

requirements support is used to produce a mapping
between the requirements space, where the difference
measure is defined, and the implementation space where
the components are integrated. A sample screenshot from
the tool is demonstrated in Figure 1.

1^^ I ■■■■■■
=P=1

Wtm* l«r >t.ll^l»iHt

MlWWWra WrR.M anrm

Figure 1. A property manager for incremental
delivery of a multi-stakeholder system (handset skin
graphics courtesy of Cybelius Software Oy).

The system allows for integrating software and non-
software components according to the assumed property
model. Where applicable, the visual models are
functional, that is, they can react with predefined
behaviors of user interaction. An advanced version of
property management involves product-oriented decision
support including product assessment, comparison, and
delivery planning.

The approach is based on the following assumptions:
• New requirements specifications are based on

existing, evaluated implementations for the same
or different stakeholders^. Stakeholder feedback
is an integral part of the evaluations. References
to pre-existing implementations are the starting
point for requirements validation. Successful
validation requires that the difference between
new specification and the referenced
implementations (the delivery delta) is kept small.

^ For creating the initial implementation a similar method
may be used for incremental system development rather
then creating a new stakeholder variant.

A requirement specification support tool controls
that difference.

• Specifications are structured to facilitate goal
setting, references to previous results,
evaluations, and delivery delta planning and
monitoring.

The method is generally suitable for:
• Medium (days to weeks) and longer scale

(months and more) ephemeral requirements. The
applicability depends on the component binding
practice

• Incremental requirements engineering for
evolutionary systems development

• Product family development (both domain and
application engineering)

• Volatile requirements
• Technology changes.

The tool's decision process is outlined in Figure 2.
The requirements specifications consist of behavioral,
qualitative functions and nonfunctional quantitative
attributes representing system qualities and resources.
The attributes must be measurable, with a defined
measurement unit, the test conditions, etc. A set of target
values indicates goal preferences and boundaries. The
functions and attributes include references to existing
implementations to support requirements validation. If
the attribute references do not use same measurement
definitions they must provide for appropriate
measurement conversions. They also have to include
respective nominal and boundary values.

Figure 2. The tool's decision process.

CMU/SEI-2003-SR-004 78

To justify the target attribute values, sets of
benchmarks are provided based on comprehensive
classes of references. Qualifiers such as stakeholder
category, deployment time, location, authority, legal
constraints, etc., provide for additional information. The
above function-and-attribute approach to requirements
and component specification is not new; it has been used
in a number of recommendations regarding scenarios,
architecture evaluation [1], etc. The innovative element
of this w^ork is the delivery delta control mechanism,
which is used to assure validity of new specifications.

3. Validation of the approach (informal)

The users interviewed after Release IB indicated that
the solutions provided a critical necessary contribution to
facilitating tools adoption. Two aspects were emphasized
in particular: Using the experience data in decision
validation and the familiar and user friendly interface
utilizing an office suite, and the virtual modeling COTS
software..

The results of Release IB were then refined on the
main project with expectation that the adoption of
Version 2, incorporating Release IB, would be improved
considerably. At the time of writing this paper the final
results were not yet known.

4. Problems and solutions

There are three classes of problems encountered in
implementing the method:

• Delivery delta minimization
• Delivery re-composition
• Multiple stakeholder coordination.
In principle, the method as proposed is only valid if

the delivery deltas are sufficiently small. Any major
deviation from available implementations must be
specially investigated, which entails introduction of
costly prototype benchmarks. A delivery delta
minimization procedure is used to assure that the deltas
remain valid at acceptable cost. Various performance
criteria may be used. In general the result is not globally
optimal. In practice this corresponds to such deployment
policies as "smallest useful deliverable" ("smallest" in
terms of delivery deltas). Appropriate feasible sets of
candidate alternatives are derived the interval
specifications of targets and benchmarks for
requirements and technology (components) with
tolerances, uncertainties, and risks.

It is likely that the two last problems can only be
efficiently solved if we have a satisfactory solution for
the first one. Delivery re-composition determines the
structure, functions and attributes of the new delivery,
rebuilt from available components according to the

changed specification with delivery deltas. The proposed
approach is based on a set of predefined attribute
aggregation models. The models are selected when
providing attribute definitions. The approach is end-user
participative, opportunistic, and not necessarily globally
optimal. It is estimated that it can provide valuable
information to stakeholders in early stages of
requirements engineering. For larger deltas the user may
get uncertainty evaluations at unacceptable level, and
possibly a warning of invalid results, or no solution at all.
Critically important are stakeholder-oriented
representations of the delivery step control, re-
composition, and stakeholder consensus search. Feature
graphs are proposed with emphasis on user-friendly
representation of attributes. There may be function- and
attribute-oriented feature graphs. An automated
conversion between the two is considered.

5. Conclusion

The paper outlines selected intermediate results of the
work in progress. The final conclusions will be published
separately [4]. The results confirm that in selected cases
of simple software tool extensions it is possible to
provide a satisfactory commonsense interface facilitating
adoption of software engineering practices. We presented
one such example, with these characteristics:

• End-user participative
• Incrementaldelivery of software
• Emphasizing the role of nonfunctional

requirements
• Including developer decision validity monitoring

based on various measures of tolerances,
uncertainties, risks, etc., of requirements and
technology (components)

• An opportunistic approach, not necessarily
globally optimal

• It is estimated that the tool can provide valuable
information to stakeholders and support their
decisions in early requirements engineering
stages.

6. Acknowledgments

This work was partly supported by the ITEA projects
BEYOND and AMBIENCE.

References

[1] Len Bass, Paul Clements, and Rick Kazman, Software
Architecture in Practice. Addison-Wesley, 1997.

CMU/SEI-2003-SR-004 79

[2] Daryl Conner and Robert Patterson, Building commitment [5] Paul Clements and Linda Northrop, Software Product Lines.
to organizational change. Training and Development J. Vol. 18, Practices and Principles. Addison-Wesley, 2002
No. 30, April 1982. r,-, • •

[6] Xnstme Faulkner, Usability Engineering. Macmillan Press
[3] Everett M. Rogers, Diffusion of Innovations. Simon and Ltd., 2000.
Schuster, 1995.

[7] Jakob Nielsen, Usability Engineering. AP Professional,
[4] "Evolutionary Delivery of Configurations for Ubiquitous 1994.
Applications", AMBIENCE Report. To appear, 2003.

CMU/SEI-2003-SR-004 80

Tool Adoption Issues in a Very Large Software Company

Jean-Marie Favre Jacky Estublier Remy Sanlaville

Adele Team, Laboratoire LSR-IMAG
University of Grenoble, France

kttp://www-adele. imag.fr

Abstract
Tool adoption is a major issue in software engineering.

In the last decades many ideas and tools have been
developed by academics but only a few have had a direct
impact on software industry. This paper describes the major
issues in tool adoption and presents some technological
approaches to cope with these issues. The focus is then on
adoption-in-the-large. The results of a ten-years
collaboration between the LSR laboratory and Dassault
Systemes are presented. Dassault Systemes is one of the
major software companies in Europe. Two scenarii in tool
adoption are described. The first one describes the
successful adoption of a configuration management tool,
the second one describes adoption issues related with a
reverse architecting tool

1. Introduction

Industry often says "no thanks" to software engineering
(SE) research, in particular when tools are proposed [1].
Technology maturation and adoption is known to be a very
long process [2] [3]. Nevertheless; it is still disappointing to
see that while many SE tools are developed, their adoption
in software industry is quite an exception. In fact, while
researchers concentrate on designing and building tools,
industry is looking for solutions. Even when a tool is very
close to a solution, it is actually very hard to get this tool
used in industry. The "last mile" [4] is a very difficult step
in the technology transfer process. It is indeed a crucial one.

To cope with this problem, a new research trend called
adoption centric software engineering (ACSE) aims to
address the adoption issue in the first place. Successes and
failures in software engineering adoption should be studied.
Iimovative ways to ease adoption must be found.

This paper describes a case study led over the last decade
in a very large software company. It describes tool adoption
successes and failures in the context of a collaboration
between the LSR-IMAG research laboratory and the
Dassault Systemes (DS) company. DS is one of the largest
software editors in Europe. This paper shows how the size
of the company can lead to specific problems that are
unlikely to occur in small or medium-size companies.

The paper is structured as following. Section 2 describes
the main issues in tool adoption. Section 3 presents
differents ways to cope with technical issues in tool
integration. Section 4 shortly describes the main
charactertics of Dassault Systemes which constitutes the
context of the case study. Section 5 describes a positive
scenario in which a configuration management tool is
adopted. Section 6 describes problems related to the
adoption of an architecting tool. A discussion is provided in
Section 7 and finally Section 8 concludes the paper.

2. Issues in software engineering tool adoption

Over the last decades, Software Engineering (SE)
research has produced many methods and tools. To evaluate
the actual impact of this body of research on software
industry, a large study called IMPACT is being held at the
intemational level. This study shows that the topic of tool
adoption is quite complex.

Even when SE tools are quite close to solutions and are
based on well-defined concepts, there are still important
barriers to their actual adoption. Many factors should be
taken into account:

• Scalability issues. Very often, a large number of
unexpected problems are discovered when applying
good tools at a large scale. This includes not only the
size of the software but also the size of the company.
While a tool could perfectly suit the needs of a single
user, its use by hundreds of software developers may
unveil new issues.

• Usability issues. Many software engineering tools
focus on flinctionality, not on usability. However the
user interface plays a very important role. Software
engineers are undertime pressure. They will not use a
tool if they can't get easily the result they need from
the tool.

• Tool integration issues. It is unlikely for a tool to be
adopted if it is not tightly integrated with the tools
already in use. Data, control and interface integration
are required.

CMU/SEI-2003-SR-004 81

• Process integration issues. A very good tool will not
be adopted if it does not fit well in the development
process of the company. This is especially true in
companies with well defined and strict software
processes.

• Customization issues. Large companies often define
their own set of concepts and rules. Customization
could be of paramount importance at the company
level. A systematic way to use tools over the whole
company should be enforced. In some situations
customization is also a desired property at the end-
user level.

• Deployment issues. In a very large company
deploying a tool could be a real issue, especially since
different teams may use different platforms, different
tools, etc.

• Administration issues. Once installed, some complex
tools require a great amount of administration. This
could include tasks such as backups, error recovery,
creation of new users, new projects, etc. The amount
of work and the skills required could be a serious
barrier to the adoption of complex tools.

• Evolution and continuity issues. Just like any other
software, a SE tool has to evolve to meet the company
evolving requirements. A company will not invest
time and money in a tool if not convinced that the tool
will be maintained and enhanced for years.
Universities are hardly convincing on that aspect.

• Training issues. The introduction of any new tool
implies a learning process. Except for very simple
tools, learning new concepts and advanced features
requires a fiill training program. This is a very serious
issue in large companies since learning represents a
temporary loss of productivity with uncertain return
on investment.

• Strategical issues. At the level of the company, many
factors could also hamper the adoption of a particular
tool. This might occur for instance to avoid
dependencies towards a particular organisation or tool
vendor, licensing problems, or any other political
issues.

Introducing a new tool in a company represents indeed a
risk. In many cases, it is actually quite difficult to get
effective managers and software engineers involvement.

3. Tool integration

Many issues listed above are intimately linked to the
organisation and the strategy of the company. Researchers
should avoid trying to address directly these issues because
it is very unlikely for them to have the appropriated skills
and knowledge. It is extremely hard for a researcher to have
an impact on the company major decisions.

To have an actual impact, ACSE research should
therefore concentrate on those parts that can be controlled in
a research environment. It is therefore better to focus on
technology rather than strategy.

3.1. Integration to existing tool sets

One way to ease the adoption of a tool is to integrate it
into the set of tools already used in the company. Currently
they are at least 4 main groups of tools used in almost any
company producing software:

• Web-based and communication tools. Web browsers
and mailers are everywhere. They are used by every
actor in the company. They play a very important role
since all communications rely on these tools.

• Integrated Development Environments (IDE). These
tools are now widely accepted among the developer
community. They are primary tools for most software
engineers.

• Office Tool Suite. Software engineers and managers
share in common the use of text editors like Word,
FrameMaker or WordPerfect. They also use tools like
PowerPoint. Documents are exchanged using
standard formats such as HTML, Postscript, PDF, etc.
Managers deal with metrics and other indicators using
spreadsheets and bar chart generators.

• Modelling Tools. Tools supporting analysis and
design are becoming increasingly popular. This is in
part due to the success of the UML standard in
software industry. There are now numerous UML
workbenches such as Rose, Objecteering, Together,
etc. These environments support not only the drawing
of models, but they also integrate code generators,
documentation generators, metrics, and many other
tools. Modeling environments still have to be adopted
at large but there is no doubt that there is an increasing
interest in UML and its associated tools.

Users are more likely to adopt a tool that works in the
same environment they use on a daily basis. This means that
SE tools should be integrated to the existing set of tools.

3.2. Integration Levels

To be effective, different kinds of integration [5] should
be supported between SE tools and existing tools:

• Data integration. Data consumed and produced by SE
tools should be shared with other tools. For instance,
the result of a metric or profiling tool should be easily
exportable to a spreadsheet for further manipulations.
It should also be very easy to insert an architectural
view into an existing document, to publish it on the
web or to send it via email for further annotations.

CMU/SEI-2003-SR-004
82

• Control integration. It should be possible to call a tool
from another one. For instance, it should be possible
to call the fimctions of a metric tool from an IDE, and
to display the result through a visualisation tool.

• User-interface integration. All tools should be
accessible from a consistent user-interface with a
common look and feel. The popularity of today IDEs
is in part due to the fact that many programming tasks
can be performed easily through a unique user
interface.

Work on tool integration is far from new. The different
kinds of integration were identified in the 80's.
Interoperability techniques such as RFC and Corba take
their roots from then. In the 80's and 90's a large amount of
effort was dedicated to Computer Assisted Software
Engineering (CASE).

In particular, many research projects focused on syntax-
directed environments. In such environments syntax-based
descriptions played a central role in supporting both data
integration and control integration. These environments
have not been adopted widely, though many concepts and
techniques they have been introduced, form the basis of
modem IDEs. It is interesting to note that many techniques
initially developed in the CASE field have been
successfully applied to other domains. This includes for
example office suites which present nowadays many of the
desirable features of CASE tools such as mutliple
sychnomized views . In fact, one of the mistakes in the
CASE vision might have been to believe that the CASE
market was large enough per se to support the development
and adoption of a rather immature technology.

3.3. Approaches to SE tool integration

It appears now clearly that the market is driven by web
technologies, office suites, and to a lesser extent by IDEs
and UML modelling tools. New and innovative SE tools
must be integrated into these existing suites. The other way
around is very unlikely.

The move from Field [6] to Desert [7] is representative
of this shift. Field is one of the precursors of CASE
environments with its strong emphasis on control
integration. Desert, its successor, seeks to integrate
programming facilities into the FrameMaker text editor.
More recently a few attempts have been made to use
PowerPoint as a design tool. These approaches provide
good illustrations of Adoption Centric Software
Engineering.

Integrating new tools in a proprietary toolset could be far
from obvious. Fortunately, a lot of improvements have been
made over the last years, making the integration of SE tools
possible. This results from efforts made both by tool
vendors and by standardization bodies

Standard exchange formats. Different de-facto
standards are widely used to exchange documents
such as RTF, MIF, HTML or PDF. The XML standard
will clearly have a major impact on data integration.
Specialized formats such as GXL [8] could be useful
to improve interoperability between research tools
dealing with graphs. Nevertheless, there is currently
no indicator that it will be adopted by software
industry.
Standard schemes: Specifying a file format is not
enough to ensure data integration. It is also necessary
to specify the schema or the meta model used to
represent data. Fortunately these concepts are well
supported by current technologies such as XML and
the OMG' Model Driven Architecture (MDA)
[9][10]. For instance MDA provides XMI to represent
and exchange UML models and meta models. It also
includes some standard meta models for different
application domains including the Software Process
Engineering Metamodel (SPEM) and the Common
Warehouse Metamodels (CWM).
Standard APIs. Using standard exchange formats and
standard schemes enables data integration but not
control integration. One way to cope with this issue is
the publication of APIs and in some case the
standardization of the APIs. Most of the tools
described in Section 3.1 provide APIs and include a
"developer kit". The MDA approach is based on the
MOF standard [11] which describes how to generate a
standard API for each particular meta model.
Scripting languages. Using APIs can be quite
complex. Scripting languages and macros offer a
much cheaper ahemative for customization and
automation of common tasks. Nowadays, almost all
commercial environments include some sort of
scripting capabilities, although most of the time the
scripting languages they provide are proprietary. For
instance office tool suites typically include extensions
of the Basic language. UML workbenches like Rose
or Objecteering include proprietary scripting
languages that support the manipulation of UML
models and the addition of new features.
Plugin and component technologies. Most
environments also support the concept of "plugin".
which enables the addition of new features in
predefined points of extension. More generally, a
large amount of research is devoted to component
technologies including for instance Microsoft' COM,
Sun JavaBeans and Entreprise Java Beans, Corba
CCM, Microsoft .NET, etc. While these technologies
are not specifically oriented towards the development
of SE tools, component technologies will certainly
play an increasing role in the future. It is interesting to

CMU/SEI-2003-SR-004 83

notice that the COM component model was originally
designed in the context of an office too! suite to enable
the inclusion of "live documents" in other documents
(e.g. the inclusion of a spreadsheet in a word processor
document). These kind of technologies obviously
present a strong interest to embed software
engineering tools or views in other documents. With
respect to the MDA approach, a new research trend
tries to define the notion of MDA components.

• Standard infrastructures. While component
technologies enable the integration and assembly of
new tools, they does not ensure per se a strong
consistency between the applications being built. For
instance good user-interface integration is not
possible without some standard rules. Fortunately, the
emergence of very open infrastructures such as
Eclipse [13] can cope with these issues.

As pointed out before, tool integration has been a
primary objective of CASE research. In the 80's and 90's
the problem was to integrate together SE tools like editors,
debuggers, profilers, etc. This objective has been met, but
mostly in situations in which the tools are built by a single
tool vendor, or by a small set of tool vendors with very close
partnerships.

In the context of ACSE, the problem has changed: it
seems now necessary to be able to integrate an arbitrary SE
tool to the suites already used in a given company.
Fortunately, the generalization of the technologies
described above leads to new opportunities. In fact, for each
set of tools described in Section 3.1, (web-based tools,
office tools, IDEs and modeling tools), efforts have been
undertaken to improve their openness. Web-based and
office tools are increasingly based on XML technologies.
Eclipse could have a strong impact on IDEs, MDA could
help the interoperability between modelling tools. One
important approach in ACSE is then to use these emerging
standards in order to facilitate the adoption of SE tools.

3.4. Summary

There are many barriers to tool adoption and the "last
mile" is always a difficult step. Some issues are due to the
organisation and strategy of the company itself and should
not be addressed directly by researchers. Others approaches
are related to the technology used. A major trend in ACSE
is to use industrial standards as a basis for the development
of innovative SE tools. Though promising this approach
will not solve all the problems. The following case study
shows that SE tool adoption is a real challenge, especially in
large software companies in which there is a real shift fi-om
adoption-in-the-small to adoption-in-the-large.

4. Case study in a large software company

In the 80's a Software Configuration Management
(SCM) tool called Adele was developed by our team at the
University of Grenoble. This tool was very generic and it
included many innovative ideas. Adele was adopted by
different companies including Matra and Sextant. The
expertise gained with industrial partners has resulted in a
long and thight collaboration between the LSR-IMAG
laboratory and Dassault Systemes [14][16]. While the first
part of the collaboration has been dedicated to configuration
managment, the second part has been devoted to software
architecture. The rest of this paper uses the whole
collaboration as a case study to summarize our experience
in SE tool adoption over the last decade.

4.1. The Dassault Systemes (DS) company

Dassault Systemes (DS) is one of the largest software
editors in Europe. DS is also the world leader on CAD/
CAM with more than 19 000 clients and 180 000 seats. DS
constitutes a very interesting context for a case study
because of the size of the company, and the architecture of
its software.

The company is indeed very large: 1000 engineers are
working simultaneously on the same software product.
C ATI A is one of the main software products with more than
5 MLOC. The requirements on CATIA software
architecture are also very strong, especially since many
customers around the world contribute to the development
of the CATIA product line. CATIA is sold to companies
that have an important know-how in their respective
domains. Boeing, for example, is a specialist in plane
construction and owns many software tools and rules. DS
customers must be capable of adapting CATIA, integrating
their own functions into existing DS applications. These
extensions constitute a significant part of the software.
Boeing alone is said to have developed more lines for
CATIA adaptation and extension than DS for CATIA itself

Actually DS and its partners constitute a large virtual
software factory in which thousands of software engineers
collaborate to the development and the evolution of a very
complex software product line. From the software
engineering perspective this implies very strong needs troth
in configuration management and in software architecture.

The collaboration between the Adele team and DS has
been centred around these two themes. Section 5 describes
the process leading to the adoption of the Adele SCM tool,
while Section 6 describes the difficulties we met in
deploying the OMVT, architecting tool.

But let us first review how tools are usually introduced in
DS since it may be representative of a typical organisation
for adoption-in-the-large.

CMU/SEI-2003-SR-004 84

4.2. Tooling support in large software companies

In small companies tool adoption issues are mostly
related to individual software engineers adopting individual
tools. This could be refered as adoption-in-the-small. This
contrast with tool adoption-in-the-large that takes place in
very large companies and that requires a much more
complex organisation. This are various reasons for that:

• The collaboration between hundreds of software
engineers is possible only if the company has a rather
well defined process, the tools playing an important
part in that process.

• Scalability issues could be so huge that only few tools
in the market, if any, fit the company needs. Tool
evaluation is indeed a very important issue.

• Large companies often have specific needs related
with their process and their culture. Customizing
existing tools could be a complex yet essential task.
Developing new tools is sometimes necessary.

• Many issues that can be solved rather easily in the
context of small companies, can lead to very complex
problems in large companies. This includes for
instance deployment on hundreds of machines,
learning programs over thousands of developers,
administration of hundreds of projects and thousands
of user accounts, etc.

Obviously programmers must not be in charge of
managing SE tools; they must concentrate on their jobs, that
is developing software. In large software company this
usually leads to the existence of a Tool Support Team
(TST). The TST is in charge of all activities related with
tool support including tool evaluation, customization,
integration, deployment, administration, learning, support,
etc. Most of the time, this team is in charge to evaluate
commercial tools. In some occasions some TSTs develop
tools internally.

In such a context tool adoption is not only restricted to
end-user adoption (that is adoption by software engineers).
A tool will be adopted only if it meets the needs of three
kind ©factors:

• A/anagew. They define the strategy of the company at
various levels. Without their agreement a tool will not
be included in the company toolset. Researchers have
to convince them of the actual benefits that the tool is
supposed to bring. And this should not be in technical
terms but it terms of actual benefits.

• TST members. They deal with all technical aspects of
tools. Most of the time, failures in tool adoption will
happen at that level, because this team is in charge of
evaluating the tool. Scalability issues, deployment
issues, integration issues, etc. will be discovered here.
Researchers must collaborate closely with the TST
during the tool adoption phase.

• Software engineers. Ultimately software engineers are
those who use the tool. Some usability issue could
appear at this level because software engineers may
have different habits in performing their development
activities. The pressure on them to use a given tool
could be important or not. Typically a company will
oblige all software engineers to use a critical tool such
as a configuration management tool. It will be much
less strict on second-class tool like a browser for
instance.

This organisation makes tool adoption even more
difficult. Researchers should face tool adoption by
managers, TSTs and end-users. They should cooperate
therefore with many different actors in the company, and
this at different point in times. This could be quite difficult,
especially since researchers are usually neither aware of the
precise organisation of the company not of the exact role of
each person they meet. In each situation, the discourse
should be adapted to the concerns of the interlocutor.

The situation is even more complex in an organisation
such as Dassauh Systemes, because of the various partners
constituting the virtual software factory. A tool used in the
company, could be later included in the development kit
delivered with the product sold. For instance, the Adele
tool, after being adopted by DS, was include in the CATIA
toolset and delivered to customers such as Boeing. The next
sections describe two scenarii of tool adoption in the
context of Dassault Systeme.

5. A successful story
in configuration management

All adoptions of the Adele SCM tool [15] started at the
initiative of the company. This was also the case of DS. This
company really needed a configuration management system
to manage the parallel developement of CATIA by
hundreds of software engineers. Actually, before the first
contact with our team, DS first asked other users of Adele
what they thought of the product and the support. They
checked many other informations, technical ones but also, if
not essentially, non technical ones. Such precautions are
natural and common. An SCM tool is a critical tool,
involving a large training, with deep influence on the
software process, and even in the software structure. Any
failure of the tool can have dramatic consequences for the
company, ranging fi-om few hours of unavailability, to loss
of sources, or delivery of inconsistent products. The
investment is heavy, the choice risky. Evolution and
continuity of the tool are of paramount importance in this
context. Any large company needs to be convinced the
product will live for long. It was improbable a tiny academic
team could satisfy these requirements.

CMU/SEI-2003-SR-004 85

DS took the risk to rely on a research team. Actually, this
is mainly because they had to. On one side, their analysis
showed Adele was the only system capable to satisfy their
requirements, mostly because of its flexibility and its
capability to adapt to their very unusual process and
characteristics. Solving the customization issue was indeed
considered as one of the major issues. On the other side DS
had to select an SCM tool. The evaluation of existing tools
showed that commercial tools were not well-suited to fit
their uncommon size and requirements. During the
evaluation period DS crashed almost all evaluated tools.
Scalability issues in existing commercial tools was
therefore another argument to invest on Adele.

Having a tool they could tailor to their needs, and having
a team capable of making it evolve in their direction was a
very strong point. It is surprising to consider that we were
the only ones (apart from the other tool vendors) who tried
to discourage them to use Adele, arguing that it was not
designed for such a huge software and large software team.

Indeed, the first full scale test of the tool was almost a
disaster; efficiency being well below requirements.
Scalability was also a major concern. In this first phase the
tool was also clearly rejected by software engineers because
they were feeling that the tool was not helping them in their
work. Usability was also a major issue. A number of
problems had to be fixed in a panic mode, because the tool
was already used at large. Then, major parts of the tool were
redesigned and reimplemented to cope with scalability and
usability issues. This was done quite quickly and efficiently.
This ability to make the tool evolve was probably the main
factor that convinced the managers to continue the
experience. The product was imder control and the relation
between the TST and the research team was good.

The situation thus improved, to reach an acceptable level
in which the acceptance by end-users was relatively good.
In parallel, different customizations were experimented by
the TST. The tool proved to be flexible enough to provide
solutions for all new requirements. One of the main features
of Adele is that it included an event-based system that
enabled to attach a trigger and a reaction to any arbitrary
event raised during the software process. The final version
of the parametrized system was used for years. It included
about 10 000 triggers describing the complete development
process of the whole company. It is probably the world's
largest trigger-based industrial application.

A new version of the system was later developed from
scratch by the TST. The goal was to retain the exact same
features, but with an order of magnitude in size of software
to be supported, and in efficiency. Of course that new
version has no flexibility nor genericity at all, but it meets
all other requirements.

6. A missed opportunity
in software architecture

The collaboration continued after this successfiil story in
configuration management. In the mid 90's, Dassault
Systemes decided to move its products from Fortran to an
object oriented design with C-H-. This huge redevelopment
effort succeeded at the beginning of 1999 with a
commercial release of CATIA V5. CATIA is made of
appoximately 50 000 C++ classes and more than 8 000
components.

In order to develop this complex product line, DS
decided to create its own framework. The OM component
model is a fundamental part of this infrastructure. This
component model is similar to Microsoft's COM but
includes more powerfiil constructs.

Just like other component technologies, the OM is quite
difficult to understand and to teach. Using the OM requires
experienced and skillfiil engineers. It introduces new
conceptual entities programmers are unfamiliar with (e.g.
OM components, bases, extensions, delegations, etc.).
Moreover these concepts are described using low-level
mechanisms like C++ entities, naming conventions, macros
in source code, specific implementation patterns, etc. An
additional issue is due to the lack of centralized description
for these concepts. Due to concurrent development within
the virtual software factory, information about a single OM
entity is often spread among a large set of different files,
that may come from different companies. Though the
introduction of the OM component technology was a major
step towards the definition of the CATIA product line,
managing this complexity quickly became a difficult task.

The collaboration between Adele-DS concentrated
therefore on software architecture. The initial goal of was to
review which recent advances in software architecture were
applicable in the context of DS. A survey of existing ADLs
was conducted to see if one of them could be adopted to
describe the architecture of CATIA. None of the existing
ADLs appeared to be satisfactory [20],

First of all, there were serious customization issues.
Some concepts like the OM inheritance between OM
components could not be described in the existing ADLs.
Handling all the specificity of the OM was an essential
requirement. In fact, most ADLs introduce high level
concepts such as connectors, but this concept for instance
was not perceived as being useful within the company.

It also appeared that the primary objectives of many
ADLs did not fit the requirements of DS. Many ADLs focus
on the verification or simulation of interaction protocols
between components. Though this is an important topic this
approach does no scale up and describing the behaviour of
all components was not considered as feasible.

CMU/SEI-2003-SR-004 86

Finally ADLs are tailored to fit in a forward engineering
process, but they usually do not take into account existing
software. It makes no sense in a large company to maintain
an architectural description if the link to source code is not
maintained. In fact DS, just like almost every other
company, is essentialy code-centric. Moving the an
architecture-centric approach was not even considered since
it would require a major risk with an absolutely unclear
return on investment.

To cope with this problem, we defined an architectural
notation for the OM concepts, but took a reverse
engineering approach. The architecture had to be extracted
from the code, not the other way around. This process had
to be fairly automatic to show immediate benefits. We
developed a specific tool called OMVT [22] to explore
CATIA at the architectural level. This tool offers different
architectural views and analysis features with a custom
graphical syntax. A special emphasis was put on the
scalabiHty and usability of this tool, providing for instance
a clean and easy to use interface.

Various demonstrations were performed to show the tool
to different actors in the company. DS software engineers
were very positive: for the first time they were "seeing" the
CATIA architecture. Comments were very encouraging: "it
is very promising for a controlled definition of
components"; "it provides both global and detailed views ...
not available today without cumbersome browsing of many
files ..." [21]. Although the OMVT tool is close to DS'
requirements and has positive assessments, it is still not
adopted in the company. The "last mile" is indeed a difficuh
step.

7. Discussion

Two different scenarii have been described: the
successful adoption of Adele configuration management
tool, and the issues in deploying the OMVT in the company.
Actually, a closer look on these examples reveals that there
are at least two main categories of tools: critical tools and
non-critical tools. This characteristic obviously has an
impact on its adoption by the company.

7.1. Adoption of critical tools

SCM tools are critical for large companies like DS.
Adele was adopted because solving SCM issues was
urgently needed and because no other tools with similar
features were available on the market. In fact the adoption
process was quite long. The TST ultimately implemented a
specialized version of the tool from scratch.

The size at DS clearly plays a very important role.
Almost all tools, including popular and effective
commercial tools, suffer from serious issues when applied

at large at DS. DS has to tailor existing tools to their needs.
This often implies special partnerships with tool vendors.
These partnerships are fundamental in the adoption of a
given tool.

In fact, if a tool is critical for a company, the company
will deploy considerable energy in getting the tool and
customizing it. If the company is large enough, developing
an in-house tool is sometimes considered. One of the main
qualities of Adele were its genericity and flexibility. They
enabled DS to define and implement their own
developement process. The integration with existing tools
in the company was not considered a primary issue because
the TST could handle these problems. In fact, existing tools
were integrated into the ADELE environment, which
reflects the fact that SCM tools are always critical ones in
large companies.

7.2. Adoption of non critical tools

Tools that do not have a direct and immediate impact on
source code are usually not considered as critical ones. They
are plenty of ways to avoid using a tool in a company.

Reverse engineering and architectural tools might fall in
the "non critical tool" category (except when a major
reengineering effort is needed, but this is not common).

It should be recognized for instance that, CATIA
developement and evolution is very successfiil even though
DS does not have a clear vision of the full architecture of
CATIA, at least in the ADL sense of the term.
Communication among highly skilled teams reveals itself to
be very effective in practice. Though the OMVT could
represent a helpful tool, until now it has not been adopted.

Although it is quite difficult to determine which are the
most important barriers to adoption of OMVT, it is clear
that it is not currently a priority in the strategy of the
company. Let us review however which technical issues
should have received more attention in an ACSE
perspective:

• Deployment issues. Deploying a tool at DS is clearly
complex. Though the OMVT tool is quite simple to
install on one computer, more attention should have
been dedicated to automatic deployment. Another
alternative would have been to integrate the OMVT in
the intranet of the company since this solution would
not require any kind of installation on client machines.
This kind of solution is widely used at DS for other
tools. The intranet is quite rich in terms of SE data.

• Integration issues. Communication is of paramount
importance at DS. Providing architectural views of
CATIA as live documents would have also greatly
helped in the diffusion of the architectural notation
and the corresponding concepts. An architectural view
that cannot be annotated and shared among various

CMU/SEI-2003-SR-004 87

software engineers is not really useful in practice.
Similarly an important aspect would have been to
integrate the OMVT as a plugin in the DS toolset.

• Customization issues. Demonstrations and interviews
among various actors of the company revealed very
different needs. Many enhancements and
customizations were required. We implemented 22
view points of sofhvare architecture, but though the
tool is based on a clean object-oriented framework,
adding and customizing new features still required
significant developement efforts. The ease of
customization would have been a strong point,
especially since just like in the case of Adele, the
needs of the company are not clearly identified.

• Evolution and continuity issues. The evolution of
CATIA V5 infrastructure is continuous. To continue
to be useful, the OMVT should have been capable of
evolving accordingly. In fact new architectural
concepts are sometimes introduced while some others
are removed. For instance, some interviews revealed a
strong interest in taking into account the concepts of
the "Feature Modeller," that is additional layer built
later on top of the OM.

Actually, one of the major problem we have faced is that
we haven't been able to achieve major TST involvement.
No TST engineer has been assigned to the deployment,
administration, support and evolution of the OMVT. Such
involvement is a prerequisite for the adoption of a tool.
Once again, since such kind of tools is not considered as
being critical, their use is not considered as a top priority.

8. Conclusion

Adoption Centric Software Engineering addresses a very
important issue in software engineering: how to cope with
the fact that research produces many tools but that, most of
the time, these tools are not adopted by the software
industry. A large list of issues in tool adoption can be
established. Some barriers are related to the organization
and strategy of the company. Others are related to
technological aspects.

Researchers should not expect to change the way
companies are making business. Research provides tools
while industry is looking for solutions to support their
strategies. This constitutes indeed a very big gap.

Research should rather concentrate on concrete and
technological aspects, especially since an actual impact is
possible there. Tool integration is an important issue. It is
however not clear if it always constitutes the most important
barrier to tool adoption. Much ACSE research focuses on
this issue and relies on the use of industry standards to
improve the chance of adoption. This is a promising way,
but this approach should not be considered in isolation.

In fact, the case study described in this paper reveals that
the size of a company plays an important role in tool
adoption. Adoption-in-the-small and adoption-in-the-large
are quite different. End user, that is software engineers, are
the natural targets in small companies. They will decide if
the tool is worth it or not. In a large company, the tool
adoption process is much more different. At least three
different parties have to be convinced: the managers, the
tool support team, and the software engineers. Even if the
software engineers would not adopt naturally a tool, tool
adoption could be decided at the managing level and
implemented by the tool support team. The distinction
between critical tools and non critical ones is important. If a
tool is considered as critical, a large company will spend a
vast amount of energy in deploying it in the whole
company. In a company like DS, it is illusory to believe that
a research prototype will be adopted as is. A close
collaboration with the tool support team is a key to success.

Our experience also suggests that to be adopted in a large
company a research tool should be generic and should
support a high level of customization, at least in the initial
phase. Actually a rewarding collaboration schema with a
tool support team would be to help them to define their own
requirements by using a generic tool. If the company is large
enough and the results of the experiments are convincing
enough, the company might implement later a specific tool
using a full engineering power. Industrial strength tools and
research tools do not play in the same category.

Our current research includes the design of G^^^
[23][24], a Generic Software Exploration Environment.
This is a meta-model-driven envirormient. It enables a very
fast integration of various kind of data sources and tools as
well as the interactive definition of new architectural views.

Our work in component-based software engineering is
also applied in this context. One of our goals is to build a
component-based fi-amework that enable the TST to build
interactively they own environements by assembling and
customizing very generic components. We do not refer here
to component programming, but on the contrary to
component assembly. The first approach still requires
programming skills and a non trivial development effort. By
contrast, component assembly refers to the interactive
assembly and customization of existing components via an
assembly tool. This tool could provide significant help to
support these tasks by using for instance wizard-style
dialogs and very interactive prototyping.

We believe that this kind of tool could considerably
improve the relationships between research teams and the
tool support teams. Research team would bring the generic
framework, the tool support team would bring their
knowledge about the company. The utltimate goal is to help
large software companies to assemble their own SE tool
suited to their specific needs.

CMU/SEI-2003-SR-004 88

9. References

[I] A. M. Davis, "Why Industry Often Says 'No Thanks' to
Research", IEEE Software, November. 1992

[2] L.B.S. Raccoon, "Fifty Years of Progress in Software
Engineering", ACM Sigsoft, Software Engineering Notes,
Vol 22, No 1, pp 88-104, January 1997

[3] S.T. Redwine, W.E. Riddle, "Software Technology
Maturation", 8th International Conference on Software
Engineering, pp 189-200, August 1985

[4] H. Muller, "Adoption Centric Software Engineering",
presentation at the Dagstul seminar on Software Architecture
Reconstruction and Modeling, Feburary 2003

[5] A. Wasserraan, "Tool Integration in Software Engineering
Environments", LNCS 467, Springer-Veriag, pages 138-150,
1990.

[6] S.P. Reiss, "Interacting with the FIELD Environment",
Software - Practice and Experience, 20(S1), 1990.

[7] S.P. Reiss, "The Desert environment". Brown University
http://www.cs.brown.edu/software/desert

[8] R. Holt, A. Winter, A. Schurr, S. Sim, "GXL: Towards a
Standard Exchange Format", 7th orking Conference on
Reverse Engineering, November 2000

[9] OMG, "MDA: the OMG Model Driven Architecture",
http://www.omg.org/mda/

[10] OMG, "Model Driven Architecture - A Technical
Perspective", ormsc/01-07-01,2001

[II] OMG, "Meta Object Facilities (MOF) Specification, Version
1.4", April 2002

[12] OMG, "Common Warehouse Metamodel (CWM)
Specification, vl.l", March 2003

[13] http://wTVW.eclipse.org
[14] Dassault Systfemes, http://www.3ds.com/
[15] J. Estublier, R. Casallas, "The Adele Software Configuration

Manager", book chapter in Trends in Software. J. Wiley and
Sons, 1994

[16] J. Estublier, J.M. Favre, R. Sanlaville, "An Industrial
Experience with Dassault Systemes' Component Model",
Book chapter in Builiding Reliable Component-Based
Systems, I. Cmkovic, M. Larsson editors, Archtech House
publishers, 2002

[17] C. Hofineister, R. Nord and D. Soni. Applied Software
Architecture. Addison-Wesley Publisher, 2000.

[18] IEEE Architecture Working Group. "IEEE Recommended
Practice for Architectural Description of Software-Intensive
Systems". IEEE Std 1471-2000, October 2000.

[19] P. B. Kruchten. The 4+1 view model of architecture. IEEE
Software, 12(6): 42-50, November 1995.

[20] Y. Ledru, R. Sanlaville, J Estublier, "Defining an
Architecture Description Language for Dassault Systemes",
4th International Software Architecture Workshop, 2000.

[21] R. Sanlaville, "Software Architecture: An Industrial Case
Study within Dassault Systemes", PhD dissertation in french,
Univeristy of Grenoble, 2002

[22] .J.M.Favre, F. Duclos, J. Estublier, R. Sanlaville, J.J. Auffret,
"Reverse Engineering a Large Component-based Software
Product", European Conf on Software Maintenance and
Reengineering, CSMR'2001

[23] J.M. Favre, "A New Approach to Software Exploration:
Back-packing with G ^^'\ European Conference on
Software Maintenance and Reengineering, CSMR'2002

[24] J.M. Favre, "G^^^. a Generic Software Exploration
Environment", 9th Intemational Workshop on Program
Comprehension, IWPC'2001

CMU/SEI-2003-SR-004 89

A Visual Language in Visio: First Experiences

Holger M. Kienle and Jens H. Jahnke
University of Victoria, Canada

{kienle,j ens}@cs.uvic.ca

Abstract

It takes a lot of effort to go from the conceptual design
for a new software engineering technique to its implemen-
tation and industrial adoption. Many such efforts fail and
some for all the wrong reasons, e.g., good concept but awk-
ward/immature user interface. Modem software engineer-
ing methods are oftentimes visual in nature. Developing
mature "bread & butter" functiormlity for such tools re-
quires significant effort in addition to the actual conceptual
advancement the inventor wants to make. As a consequence,
this bread & butter functionality is oftentimes immature or
awkward to use in research tool prototypes. Unfortunately,
such problems can seriously impede industrial adoption of
a new technique. We propose a software development ap-
proach that leverages widely-used, shrink-wrapped office
tools by building visual tools on top of them. We believe
that tool implementations that follow this approach have
many desirable features from the user and adoption point of
view. The approach is explored with a case study that devel-
ops microSynergy—a graphical development environment
for the rapid construction of distributed embedded micro-
controller software—on top of Microsoft Visio.

1. Introduction

Potential reasons why some promising new software en-
gineering tools remain lab orphans are, for example, users'
unfamiliarity, difficult installation, non-intuitive user inter-
face, unfavorable learning curve, and poor interoperability
with existing development tools and practices.

Tools that are based on visual approaches pose additional
adoption challenges. Examples of visual tools are (domain-
specific) visual languages in the programming domain and
graph-based exploration and editing tools in the reverse en-
gineering domain.

Visual approaches often force developers to abandon
parts of their existing tool infrastructure in addition to learn-
ing new paradigms. Understandably, developers are reluc-
tant to adopt a new visual tool (whose impact they cannot

yet assess) if it means that they have to abandon their fa-
miliar productivity tools. Furthermore, advanced graphical
editing lacks universal paradigms which means that knowl-
edge gained from one tool cannot readily transfered to an-
other one [1].

While a visual approach can result in a more intuitive
user interaction, the oftentimes idiosyncratic GUIs of re-
search tools pose a significant adoption challenge. How
can visual tools offer GUIs that are familiar to users? We
propose a software development approach that leverages
widely-used, shrink-wrapped office tools by building visual
tools on top of them. Office tools such as Microsoft Vi-
sio and PowerPoint already offer general functionality that
is expected of visual languages. For example, visual ele-
ments can be created and deleted; manipulated; connected;
copied and pasted; and saved and loaded. Developers are
already intimately familiar with this functionality because
they use them on a daily basis to produce pictures for doc-
umentation and presentations. Both Visio and PowerPoint
are highly programmable and customizable. Thus, domain-
specific behavior (e.g., the particular look of visual elements
and how they are allowed to interact) can be crafted on top
of the existing, general functionality.

We illustrate our proposed approach with a case study
of a visual tool in the embedded micro-controllers domain,
called microSynergy, which we are currently implementing
on top of Microsoft Visio.

Section 2 briefly describes microSynergy in general and
its requirements. Section 3 discusses our preliminary ex-
periences of implementing microSynergy with Visio. Sec-
tion 4 closes with some conclusions.

2. microSynergy

microSynergy [3] is a graphical development environ-
ment for the rapid construction of distributed embedded
micro-controller software. In industry, such applications are
often developed fi-om scratch and implemented using low-
level programming languages like assembler or C. The soft-
ware is often tightly coupled with specific hardware archi-
tectures, allowing little reuse and hindering interoperability.

CMU/SEI-2003-SR-004 90

This results in applications that are often only maintainable
by programming experts who have an understanding of both
the target hardware and the application domain.

microSynergy allows to visually specify the interaction
logic for communication among multiple micro-controllers
with the Specification and Description Language (SDL) [6].
Being developed by the International Telecommunications
Union (ITU), SDL initially was intended to serve as a spec-
ification language for telecommunication systems. Today,
it is increasingly adopted for other application areas. It has
a standardized graphical representation with entities such
as blocks, processes, procedures, signal and type declara-
tions, inputs, outputs, conditions, variables, states, and tran-
sitions. A major advantage of SDL over alternative specifi-
cation languages such as, for instance, the Unified Modeling
Language (UML), is its formally defined and unambiguous
semantics of each entity.

Research in microSynergy has been carried out in tight
collaboration with Intec Automation Inc., a company in the
area of embedded systems [2]. One of the research goals
identified by Intec was the development of a tool that

• smoothly integrates into their current tool infrastruc-
ture and work processes.

• offers a steep learning curve' thus optimizing training
costs and raising productivity.

These issues are closely related to tool adoption. A tool that
does not integrate well into an existing infrastructure and
process is less likely to be adopted. The same holds if the
tool requires a significant up-front investment from the user.

Users of microSynergy are, for example, engineers that
have no knowledge of general-purpose programming lan-
guages. However, these engineers are often familiar with
the SDL formalism. Therefor, we chose a visual modeling
paradigm based on SDL. microSynergy's visual program-
ming approach has the benefit that engineers manipulate
graphical SDL objects with which they are already famil-
iar. Since engineers operate in their familiar domain, we
can expect the work product to be more easily understood
and maintained in comparison to other (textual) representa-
tions that lack closeness to the problem domain.

3. Visio microSynergy

We analyzed office tools with regard to their suitability
in providing a development environment for a microSynergy
interface with desirable usability features. We just started
our implementation with Visio and report on preliminary
results. Figure 1 shows a screenshot.

'Learning curve researchers use steep to denote the desired behavior;
this is opposite to the popular use of the term that views a steep learning
curve as bad [4]. >

We decided to choose Microsoft Visio 2002 [7] because
it is highly customizable and offers a robust user interface
to build upon. Furthermore, it has a large user base and is
commonly found in industry. In fact, our industrial partner,
Intec, is using Visio.

Visio can be easily customized for different domains as
nicely illustrated by the applications that Visio already of-
fers: Web maps to visualize the components of Web sites,
ER diagrams to model databases, electrical engineering di-
agrams for industrial control systems etc.

A customized application for a specific domain can, for
example, offer

• customized stencils that contain the visual elements of
the domain.

• additional toolbars, accelerators and menus.

• additional menu entries in a visual element's context
menu.

• custom properties for visual elements.

• windows that contain hierarchical views ("model ex-
plorer") and domain-specific error messages.

• help features as an extension to the Visio help systems.

Visio exposes a VisualBasic API to access and analyze
a document. All GUI elements (e.g., window, page, shape,
and selection objects) are represented in the Visio object
model [8]. Thus, it should be possible to seamlessly inte-
grate domain-specific fiinctionality on top of Visio.

Visio promotes tool adoption by leveraging:

a familiar GUI: The user interacts with a familiar environ-
ment and paradigm. Application knowledge has been
typically built up by the user over years. Since the user
is already familiar with the standard functionality, he
can concentrate on learning new functionality (incre-
mentally).

tool interoperability: Other office tools such as Word,
PowerPoint, and Excel interoperate with Visio via cut-
and-paste and (file-based) import/export facilities. For
example, a SDL drawing in Visio can be easily im-
ported in Word for documentation and PowerPoint for
presentation purposes. Thus, users can be more pro-
ductive in their daily work. Visio can output drawings,
templates, and stencils in XML encoding. Thus, stan-
dard XML tools can be used to pre- and post-process a
document.

customization and personalization: Office applications
often have fine-grained customization features,
especially for the graphical user interface. For ex-
ample, GUI elements in Visio can be (interactively)
repositioned and hidden.

CMU/SEI-2003-SR-004 91

taMkrosortirtso K-'i:&'ti-.:..'y.
I Be &it idew IrBot Farmjt loot shape !ar«*)w befc

jFlowNormai .Anal » 8pt » ! B / U ' B ^3 A^-^ - * - = - 5? . g . .

-IffU'l
SOL

• About SOL fb»-charts

• About flowchart types

• None of Ihe above, tooktfcr

Page 1/1

Figure 1. Screenshot of Visio micwSynergy

tool support: Popular tools come with a large infrastruc-
ture that provides useful information to the user. For
example, (online) publications discuss how to use a
tool most effectively. Mailing lists and discussion fo-
rums help troubleshoot users' problems.

Tools that have a small target audience—which is typically
the case for research tools—especially lack in the above ar-
eas. Since these tools focus often on the "proof of concept"
and have limited financial resources and manpower, their
GUIs provide only rudimentary functionality and does not
support sophisticated customization or scripting. Since the
user base is small, few experienced users exists (sometimes
these users are mostly the tool's developers) that can offer
help via mailing lists or newsgroups. Documentation is un-
professional, outdated, or non-existent.

3.1. Experiences

Visio keeps a group of graphical elements in a stencil
(see "Shapes" window on the left in Figure 1). For SDL,

we could reuse several SDL shapes {masters in Visio termi-
nology) that were already part of Visio. We had to modify
Visio's SDL "Output" master (see "Heat ofF' and "Heat on"
in Figure 1) because its orientation was wrong. We used the
master editor to change the shape and the master icon editor
to change the shapes appearance on the stencil. We reused
the SDL "Process" master (see "Heater"in Figure 1) from
another SDL editor [5].

We found that domain-specific (GUI) behavior can be
conveniently implemented with VisualBasic scripting. It
was helpful having had prior experience in scripting other
Microsoft office tools; they share many concepts and code
can often ported with no or minor modifications. Since a
programmer can incrementally add and immediately after-
wards test the code, it is natural to build the application
with rapid prototyping. VisualBasic offers a full develop-
ment environment (with editor and debugger) that is tightly
integrated with Visio. Scripting languages are a common
mechanism to provide extensibility in office tools. Thus,
power-users can look "under the hood" of an implementa-

CMU/SEI-2003-SR-004 92

tion and modify it to better fit their needs. [8] G. Wideman. Visio 2002 Developer's Survival Pack. Trafford,
An important customization feature in Visio are custom 2001.

properties. They are essentially key/value pairs that can be
used to associate data (e.g., strings, numbers, boolean val-
ues, and lists) with visual elements. Custom properties are
automatically saved and loaded as part of a Visio document.
Thus, in our case, no code for persistence had to be written
and the user can use the standard save and load functional-
ity.

4. Conclusions

We believe that idiosyncratic GUIs along with unfamil-
iar concepts and paradigms are the primary adoption chal-
lenges that have to be overcome for visual tools. Our main
hypothesis is that users will more likely use visual tools that
are integrated into an environment that they use daily and
know intimately.

A promising approach to achieve this goal is building
these tools as extensions of shrink-wrapped office applica-
tions. Shrink-wrapped applications such as Visio can pro-
vide strong support for generic editor functionality, but offer
quite limited support otherwise. Scripting can be used quite
effectively to rapidly implement (domain-specific) func-
tionality on top.

As discussed, Visio microSynergy has many desirable
features from the user and adoption point of view. Our ex-
periences give a first indication that this development ap-
proach can indeed help tool adoption. However, formal
studies with user experiments are needed to confirm this hy-
pothesis.

Acknowledgments

The microSynergy project has been jointly funded by In-
tec Automation Inc. and the Advanced Systems Institute of
British Columbia.

References

[1] W. J. Hansen. The 1994 visual languages comparison. IEEE
Symposium on Visual Languages, pages 90-97, Oct. 1994.

[2] Intec Automation Microcontrollers & Data Acquisition Sys-
tems. http://www.steroidmicros.com/.

[3] J. Jahnke. Engineering component-based net-centric systems
for embedded applications. ESEC/FSE 2001, Sept. 2001.

[4] C. F. Kemerer. How the learning curve affects CASE adop-
tion. IEEE Software, 9(3):23-28, May 1992.

[5] SDL-2000 and MSC-2000 Visio Add-on. http://www.
pherber.com/share/sdl/index.html.

[6] Telelogic Tau. http://www.telelogic.com/
produc ts/tau/sdl/index.c fm.

[7] Microsoft Visio. http://www.microsoft.com/
office/visio/.

CMU/SEI-2003-SR-004 93

Challenges Faced in Adopting Automated Standards Enforcement Tools

T. K. Shivaprasad
Tata Consultancy Services

t.krishnamurthv@i(sa-tcs.com

Vipul Shah
Tata Consultancy Services

v.shah @ usa-tcs.com

Abstract

A good software development process requires programs
to adhere to well-defined programming standards. Strict
and comprehensive conformance checking of a program
leads to detection of potential errors and unsafe uses,
early in the software development life cycle. This, in turn,
leads to a reduction in time spent on testing and also
contributes to the improved quality of the program. In
this position paper we describe the tool Assent, built at
Tata Research Development and Design Centre
(TRDDC) Pune, India. Assent uses a powerful
specification-driven mechanism to generate standards
checking tools. Assent uses a static semantic analyzer
which makes use of global data flow analysis to detect
potentially dangerous constructs in software. We present
a case study, on a legacy billing application for the
telecom industry, to demonstrate benefits to the user. We
also describe the challenges faced in adopting the tool in
practice.

1. Introduction

Identifying defects early in the software development
lifecycle is very important for any application and
especially so for mission-critical systems. Failure to
detect defects could lead to loss of revenue and possibly
loss of life. There have been a number of instances in the
past where systems have failed resulting in disasters like
the: "Ariane-5 mishap" [1, 2], the "Space shuttle
Columbia mishap in 1981" [3] and the "AT&T Service
failure" [10, 11]. In most of these cases, the problems
were attributed to software defects.

A good software development process would require
programs to be written using a well-defined programming
standard. Programming standards are usually equated to
uniform naming conventions and coding style. Though
these are important, good programming practices
contribute more to reducing defects and ensuring better
quality of the application system. There are other sets of
rules, we would like to term as "semantic" rules, non-
conformance to which can lead to program crashes. These

would include rules like "do not use un-initialized
variables" or "do not de-reference null pointers".
Programming standards should therefore comprise good
programming practices, semantic rules, naming
conventions and coding style.

Our experience in working with a large number of
organizations across industry verticals like insurance,
finance, banking, and telecommunications, among others,
has been that there is usually a lack of well-documented
programming standards. In most cases, programming
standards may exist, but they may not be current. Even if
we assume that standards are documented and available
for use, how do we address the larger problem of finding
skilled reviewers? How do we ensure completeness and
consistency of review with respect to the laid down
standards? It is manually impossible to apply each and
every rule from the standard on every line of code!

In practice, people use their experience and look out
for most commonly occurring defects. One of the
problems with code review is that there is usually a lack
of focus. Reviewers try to address too many things —
functionality, performance, ensuring modularity and re-
usability and adherence to good programming practices.

An automated standards checking tool can therefore be
of great value to programmers. It can not only ensure
completeness and consistency with respect to the laid-
down standards, but also enable the reviewers to focus
their review on other aspects.

The remainder of the paper is organized as follows.
Section 2 provides a brief description of the automated
standards checking tool developed by TRDDC, the
research division of Tata Consultancy Services (TCS).
Section 3 presents a case study on Assent and illustrates
the results of using Assent. Section 4 lists the challenges
faced while trying to get the tool adopted by developers.
Finally, section 5 provides the conclusion of the paper.

CMU/SEI-2003-SR-004
94

2. Assent

Assent [5] is a tool that can automatically detect
potentially dangerous constructs in software. Assent uses
a powerful specification-driven mechanism to generate
standards checking tools. Programming standard rules are
defined as rules in a high level functional specification
language. The specification is then automatically
translated into a standards checking tool by the Assent
framework. This ensures that a standards checking tool
can be built quickly and at a far lower cost than by using
conventional tool building techniques.

Program analysis, in particular, data-flow analysis [4,
8], has found many new and interesting applications in
practically all aspects of software engineering over the
last few years. Assent uses a static semantic analyzer
which makes use of global data flow analysis [9]. Static
analysis provides information on "reaching definitions",
"used variables propagation" and "alias analysis in the
presence of pointers and parameter bindings" [7] which
can help identify "def-use and use-def chains", "use of
uninitialized variables", and "possible null pointer de-
referencing", among other things. The global data flow
analysis technique provides Assent an ability to check
programs for conformance to semantic rules.

We illustrate the specification language through the
following examples:

Example 1: Syntactic rule. This rule doesn't use any
flow-based analysis:

RULE: There shall be no un-used variable (variable
declared but not used) in the program

USES: crossRefO // crossRef , for a variable x, gives
all usage points of x in the program

RULE_ENTITY: All variables
RULE_BODY:
let
vars = entities(program, VARIABLE); // collect all the

variables in the program
in
{ x <- vars I IsEmpty(crossRef(x))}; // report all the

variables whose usage set is empty.
END

Example 2: Rule using data flow analysis

RULE: 'for' loop counter should not be modified
within body of for

USES: reachesO which implements "reaching
definitions";

RULE_ENTITY: All 'for' statements
RULE_BODY:

let

forjncr = incrExpr (for_stmt); //take the
increment expression in 'for'.

incr_vars = usedVars(for_incr); // collect the
used variables in the increment expression

Reaches = Filter (reaches(for_incr,true), incr_vars
) // get the reaching definitions at the incr. expression
node. Filter to get the definitions for the identifiers used
in increment expression

for_AST = entities (body(for_stmt), ASTNODE);
// get all the statements (nodes) in the body of the 'for'
statement

in
iSEmpty (for_AST . Reaches) // take the

intersection of the two sets - for_AST and Reaches. If the
set is not empty then the definition is in the body of the
'for'.

END

The Assent tool can be integrated into a normal SDLC,
making automatic standards checking an integral part of
the development process. Assent has been successfully
deployed in building standards checking tools for
different standards, including MISRA-C [6] and Java
standards.

The Assent framework of standards checking tools
addresses a wide variety of programming standards and
programming languages. Assent will automatically ensure
that programs adhere to the defined standard. Benefits of
using tools like Assent in review process are:
• Automated inspections
• Cutting down on code inspection time
• Defects are caught early in the life cycle
• Reduced cost of software development
• Improved quality of standards checking and hence

better product

3. Case study

A module of 54K lines of C code, from a legacy
billing application for the telecom industry, was chosen to
demonstrate the capabilities of Assent. The aim was to
evaluate the capabilities of a standards checking tool in
improving productivity and delivering better quality
systems.

Since the system was under maintenance, Assent was
not expected to find any major problems. Surprisingly,
Assent detected about 1411 possible violations. Of these,
39% of the violations were possible defects that could
cause the application to crash, if a particular path in the
program was executed. Non-adherence to certain good
programming practices also led to incorrect functionality.
The detection of such a large number of undetected fatal
errors, from only a small section of the code that had been

CMU/SEI-2003-SR-004 95

in production for over 10 years, was a matter of grave
concern.

The effort to manually review 54KLOC of code would
be over 1 person month. Since complete and consistent
application of coding standards is an impossible task
manually, the manual process would have been able to
find only a subset of all the non-conformances. Using
Assent, we were able to complete the task in 1.5 hours —
a tremendous reduction in review time!

3.1. Results

The programs were checked for conformance to
standards using Assent and the non conformances were
verified. 1411 non-conformances were detected by the
tool. Out of the 25 rules defined for the standard, 11 rules
were violated in the code. It took Assent 1.5 hours to
check the conformance of the code to the given standards.

The 1411 non-conformances reported would not
necessarily translate to an equivalent number
of defects. As the programs were not executed, and
therefore conditions not evaluated, a small number of the
non-conformances detected would be false negatives.

Table 1 below depicts the non-conformances reported
by Assent.

Table 1. Non-conformances reported by Assent
Defects that can cause programs to
crash
Structured Programming
Good programming practices
False Negatives

39%

30%
19%
12%

3.1.1 Structured programming. Table 2 below depicts
the non-conformances reported by Assent that are related
to structured programming.

 Table 2. Structured programming
Goto should not be used I 54%
Null statements should be placed on
a separate line
Every switch should have a default
case

43%

3%

The rule "Null statements should be placed on a separate
line" is useful in detecting unintentional statement
terminators. Avoiding Goto in programs is a very well
documented feature in programming.

3.1.2 Good programming practices. Table 3 below
depicts the non-conformances reported by Assent that are
related to good programming practices.

Table 3. Good programming practices
Identifier should not have the same
name in different scopes

55%

IfAVhile expression should not
contain assignments

28%

For loop counter should not be
modified within for body

9%

Every function should have a
prototype visible at the call point

5%

Type mismatch 3%

Some of the rules violated in this category are:
• The 'for' loop counter should not be modified

within the 'for' body, as it can lead to the for
loop executing an incorrect number of times.

• Conditional statements should not have
assignments. This may lead to confusion. In C,
one of the most common errors is usage of '=' in
an conditional statement instead of '='.

3.13 Defects that cause programs to crash. Table 4
below depicts the defects in the code reported by Assent
that can cause programs to crash.

Table 4. Fatal defects
Possible null pointer dereference 41%
Use of uninitialized variables 35%
Possible null pointer dereference -
False Negatives

24%

Some of the rules violated in this category are:
• Usage of un-initialized variables. If the value of

variables that have not been initialized is
undefined, then the use of incorrect values may
lead to incorrect behavior or may cause
programs to crash.

• The Null pointer should not be dereferenced.
Pointers that have a null value when
dereferenced cause the application to crash.

4. Challenges with large scale adoption

From the case study, it is evident that standards
checking tools like Assent aid in improving productivity
and delivering better quality systems. Tools ensure
maximum coverage of the code and list the non-
conformances with respect to the specified standards. To
prevent critical applications from crashing, it is
imperative that tools like Assent be integrated into a
normal SDLC, making automatic standards checking an
integral part of the development process.

One would assume that the next logical step would be
for users to deploy it as a part of the process. We faced

CMU/SEI-2003-SR-004 96

the following practical problems when we tried to get the
tool adopted.

• Large number of non-conformances reported by
the tool: Developers are not prepared for the
number of violations reported by a standards
checking tool. The manual process can only
detect a fraction of the possible defects in the
code due to the inherent limitation of the
process.
Code reviewers and developers are used to these
numbers and large number of non-conformances,
though valid, turns them away from the tool.
Large numbers of violations in the code are not
taken very kindly by developers as it raises
doubts about their abilities.

• Programming standards: The practice commonly
followed while defining programming standards
for any organization, is to collate from existing
standards and form an all encompassing
standard. This results in a number of rules
unnecessarily being made a part of the standard.
Since the programming standards are used as a
guide and not put completely in practice, it does
not impact the manual process, but results in a
lot of noise, in terms of violations, in an
automated process.

• Severity levels: This leads to another interesting
observation. It is a practice to assign severity to
each non-conformance. What may have been
perceived as a major severity defect while
defining the standard, may no longer be
considered major after checking the code for
conformance to the standard.
Though this provides a good opportunity to
revisit the standards and tune them, it is easier
said than done and developers shy away from it.

• False negatives: Since the technique employed to
perform standards checking is static, the results
are conservative. As programs are not executed,
governing conditions which ensure correct
execution are not evaluated, resulting in a
number of false negatives.

• Performance: Global data flow analysis is known
to be slow, as it iterates over the program graphs.
Developers expect a standards checking tool to
perform in real time like a compiler and are not
willing to wait for minutes or hours, as the case
may be. For large programs, performance
becomes an issue and though we reconmiend
that the tool be run in either single file analysis
mode or batch mode for an entire application,
this is not acceptable to developers.

• How do I fix it?: It has been our experience that
once the tool reports a non-conformance,
developers do not have a clue as to what the

violations mean and what should be done to fix
them. The rationale behind defining a rule is not
clear. We need to impart training on
programming standards, before providing
training on the tool itself

• Integration into process: Standards checking
tools should integrate seamlessly into the
development process. The tools should either
integrate into the visual environment, or into the
make files, as the case may be. We found that in
the case of our tool, users had to re-specify the
include paths and defines. Until all the include
paths and defines were given to the tool, it
would not function. A numbers of developers
gave up after initial failures.

• Language dialects: Although ANSI/ISO
standards have been defined for C/C-H+, we have
found to our dismay that most compilers differ in
their implementation. They support extensions
that are non-standard. In the case of C++, we
have yet to come across a compiler that does not
deviate in its interpretation of the standard,
especially with respect to language features like
templates. This is a tool builder's nightmare, as
all the dialects cannot possibly be supported.

• Modify/Customize rules: Developers perceive
that they may need to modify the rules or add
new rules over a period of time. It is not very
easy for the developers to do so as the
specification languages are either too complex or
too simple, so that they end up writing a lot of
code.

5. Conclusion

Adhering to good programming practices not only
improves maintainability, but also improves the quality of
the code by reducing the number of defects that get
injected into the system. But, conforming to programming
standards is not easy.

Some of the problems discussed in the earlier section
can be addressed to some extent by providing adequate
training to developers. What are programming standards?
Why are they needed? What is the rationale behind each
rule? Answers to these should be highlighted in the
training.

The need for automated standards checking tools
exists and tools have failed to fulfill the potential. The
tools need to also provide clues and hints to the
developers and possibly auto correct as many non-
conformances as possible. A channel to incorporate
developer feedback to improve the standards should also
be set up. Proliferation of standards checking tools would
then be easier.

CMU/SEI-2003-SR-004 97

6. References

fl] European Space Agency, EAS/CNES Joint Press Release
ArianeSOl, No. 33-96, 23 July 1996.

[2] European Space Agency, Ariane 5, Flight 501 Failure,
Board of Inquiry Report, 19 July 1996.

[3] Excerpt from the Case Study of the Space Shuttle Primary
Control System Communications of the ACM 27(9), September
1984, p. 886.

[4] A.V Aho, R. Sethi, and J.D Ullman. Compilers: Principles,
Techniques and Tools. Addison-Wesley, Mass., 1986.

[5] A. Sreenivas and V. Shah. Assent: An Automatic
Specification-driven Standards Enforcement Tool. Technical
report, Tata Research Development and Design Centre, Pune,
India, 2000-01.

[6] The Motor Industry Software Reliability Association.
Guidelines for the use of the C language in Vehicle Based
Software. The Motor Industry Research Association,
Warwickshire, UK, April 1998.

[7] M. Emami. A practical interprocedural alias analysis for an
optimizing parallelizing C compiler. PhD thesis, School of
Computer Science, McGill University, August 1993.

[8] M.S. Hecht. Flow Analysis of Computer Programs. Elsevier.
North-Holland, 1977.

[9] H. Pande and A. Sreenivas. Darpan: A program analysis
framework. Technical report, Tata Research Development and
Design Centre, Pune, India, 1998.

[10] Ghost in the machine. Time magazine, 1990.

[11] Risks Digest, Vol. 9, Issue 61.

CMU/SEI-2003-SR-004 98

On the Security Risks of Not Adopting
Hostile Data Stream Testing Techniques

Alan Jorgensen
Department of Computer Sciences

Florida Institute of Technology
aj@se.fit.edu

Scott Tilley
Department of Computer Sciences

Florida Institute of Technology
stilley@cs.fit.edu

Abstract
Security in all its forms plays an increasingly important
role in many aspects of our lives. Given the importance of
software applications to the modern information-driven
economy, latent errors in popular commercial
applications should no longer be considered mere
annoyances, but as potentially serious security risks.
Sample data from two recent case studies are used to
illustrate the scale of the problem. This paper argues that
techniques such as hostile data stream testing be adopted
as standard practice by the software engineering
community.

Keywords: security, testing, buffer overrun, best practice

1. Introduction

It is an unfortunate fact that many software
developers fail to properly constrain the activities of
input, output, storage, and computation [15] [6]. It is also
an unfortunate fact that software testers often fail to test
for these failures, resulting in a plethora of security
breaches initiated by buffer overruns. A search of the
CERT/CC Web site [11] using terms such as "buffer",
"buffer overrun", and "buffer overflow" yields an
alarming number of hits (nearly 1,000 as of March 2003).
Unfortunately, as shown in Figure 1, things don't seem to
be getting any better.

Buffer overruns are a major source of security
breaches for users (and providers) of the Internet. A
typical breach involves sending a carefully crafted
overlong data string such that program control is
appropriated and redirected to the data string itself The
data string is crafted to contain hostile code that performs
undesirable actions such as, in the case of a computer
virus, retransmitting the hostile data stream to other
computers. Once hostile code has been executed, a large
variety of insidious behaviors may take place.

One of the most dramatic instances of the havoc
caused by buffer overrun happened in January 2003 [13].

Branded the "SQL Slammer" worm, it exploited known
vulnerabilities in Microsoft SQL 2000 servers. It caused
widespread outages on the Internet due to the extremely
large amount of network traffic it created while it scanned
for vulnerable hosts. Microsoft issued a patch for this
problem in the summer of 2002, but many system
administrators failed to apply it to their computers
(including machines at Microsoft itself). Fortunately,
there was no malicious payload associated with the SQL
Slammer worm; if there had; the damage to the Internet
worldwide could have been extremely significant.

The next section overviews a technique, called
hostile data stream testing, that can be used to proactively
identify buffer overflow errors in software. Section 3
offers some examples of the use of this technique on
common applications. Section 4 discusses some
recommendations on the adoption of testing techniques to
expose security vulnerabilities. Finally, Section 5
summarizes the paper and outlines possible avenues for
further work.

2. Hostile Data Stream Testing

A program storing data outside of the area reserved
for that data creates a buffer overrun. Typically this
involves storing a sequence of data greater in length than
the storage area (buffer) reserved for that data. Storing
data in an inappropriate place usually causes the software
to enter states unanticipated by the developer and
consequently the behavior of software after an arbitrary
buffer overrun is unpredictable.

Steganography is the embedding of a hidden message
within another message. In the context of data transmitted
over the Internet, data included within that transmission
that serves a purpose other than the original purpose of
the data transmission is steganographic data. An example
of this kind of data would be hostile code embedded in
what would otherwise be informational (inactive) data.

CMU/SEI-2003-SR-004 99

CERT/CC Buffer Overflow Advisories and Incidents by Year

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Year

Figure 1: CERT/CC Buffer Overflow Summary

This class of security failure can be avoided by the
identification and elimination of the defective code that
performs buffer overruns. Historically, buffer overruns
have been located by manual examination of source code.
Though manual or automated code inspection is a useful
and (sometimes) effective way to locate buffer overrun
coding defects [2][14], in today's development
environment of large, complex programs and libraries, the
source code may not be available for review. Moreover,
coding errors may be sufficiently subtle so as to elude
even the most experienced programmer.

A black box testing method for identifying buffer
overruns is described in [5]. This testing technique applies
randomly deformed data streams to the application under
test. This technique also provides a broader testing
capability, however, and includes the ability to detect
steganographic possibilities (places in data streams where
information can be hidden without detection by the
application processing that data stream).

Random data stream deformation is the process of
taking a valid data stream and deforming that data stream
in a manner such that the data stream is no longer valid.
Three types of file deformation are used in the technique:
lexical, syntactic, and semantic. Lexical deformations
involve changing a valid lexical element to an invalid

lexical element. An example of a lexical deformation is
replacing a printable character with a non-printable
character. In practice, the method is extended to include
any character replacement.

Syntactic deformations involve changing valid
syntactic elements to lexically correct but invalid
syntactic elements. An example of a syntactic
deformation is replacing a left parenthesis with a space
character. (Previously, this definition was extended to
include long string insertions. However, long string
attacks now appear to be fourth technique for data stream
deformation.)

Semantic deformations involve changing valid
semantic elements to syntactically correct but
semantically invalid elements. An example of a semantic
deformation is changing the representation of a number to
the representation of a different number that is invalid in
that context.

A system for performing randomly malformed data
stream testing system was recently developed at the
Florida Institute of Technology. It is an automated
solution to the buffer overrun detection problem that has
been applied to commercial client application software.
The next section discusses two case studies that apply this
tool to widely used Internet applications.

CMU/SEI-2003-SR-004
100

3. Examples

To illustrate the pervasive nature of latent security
bugs in common software applications, we present brief
summaries of two case studies. The hostile data stream
testing technique outlined in Section 2 was used in both
cases. The number of errors identified using this method
was somewhat surprising, since both applications under
scrutiny have been widely deployed for a number of
years.

3.1 Example 1

The first case study looked at a popular application
for viewing Portable Document Files (PDF) [1]. This
application is generally considered to be "trusted"
software, coming as it does from a well-known company
with a long and successfiil history. The PDF viewer is a
ubiquitous application that runs on multiple platforms,
and as such made an excellent choice for analysis.

The study applied 141,306 unique test cases. There
were four recorded categories of failure, which were
characterized as (1) application failure, (2) infinite loop,
(3) failure-to-respond, and (4) steganographic. The tests
revealed eleven distinct indications of buffer overrun,
numerous program lock-ups, and four steganographic
possibilities. Over all the test cases, there were 426
recorded cases of the first three types (which are severe
application failures). Other than the uniqueness of the test
cases, failure-to-respond failures were not classified to
determine uniqueness of the failure.

In an infinite loop failure, the application is still
running, but it is no longer possible to communicate with
it. In contrast, failure-to-respond failures occur when the
application is stalled and no longer responds to external
stimulus. Both types are failures share characteristics that
are similar to a denial-of-service attack on a network.

Steganographic failures seemed to be the result of the
application performing incomplete parsing of the input
data file. This leads to possible steganographical
opportunities such as (1) comments, (2) "Document
Property" objects, and (3) data after the "End of File"
indicator ("%%EOF").

These application failures can legitimately be
considered to be security vulnerabilities.

3.2 Example 2

The second case study looked at a popular browser
plug-in and standalone application for viewing animation
on the Web. Like the first case study, this program is
nearly ubiquitous; it enjoys the largest penetration of any

browser plug-in. Therefore, any flaws identified in it
would have considerable implication for a very large
number of users.

There were over 650,000 test cases that were run
against this application. Each test case took (on average)
less than 10 seconds, resulting in about 75 machine-days
of testing on a standard personal computer running
Microsoft Windows 2000. From these tests, more than 30
distinct symptoms of buffer overrun were discovered.
There were also several hundred failure-to-respond stalls,
but they have not as yet been further classified except by
gross symptom (requiring hardware reboot, 100% CPU
utilization, etc.)

The analysis of the data fi-om this case study is still in
progress. Nevertheless, preliminary results suggest that
there are a large number of latent bugs in the application.
If even a fraction of these bugs can be exploited as
security vulnerabilities, then the problem is quite severe
indeed. (The term "exploited" seems to have a broad
range of meanings, from simple denial of service because
the application crashes or stalls, to the most severe that
allows preemption of control of the processor with root
user privileges.)

4. Recommendations

The current situation appears to be one where
developers do not properly defend against buffer overflow
attacks in their code, and where testers do not properly
exercise the application to bring latent buffer overflow
errors to the attention of the developers. In this context,
we offer three recommendations that would begin to
address this problem.

4.1 Improve the Quality of Software

This is not a glib statement. It has long been a goal of
the software engineering community to improve the state-
of-the-practice. However, many potential improvements
have been discarded in favor of practices that shrink the
time to market for commercial software applications -
often at the expense of product quality. When the quality
attribute in question is security, we do not feel that this is
a valid tradeoff.

Security flaws in modem software systems should no
longer be treated as mere annoyances, but as the high-
level risks that they truly are. It is an old anecdote that
consumers would never put up with the number of bugs
found in personal computers (and the software that runs
on them) in any other appliance or mainstream product.
The software engineering community as a whole must be

CMU/SEI-2003-SR-004 101

held more accountable for the quality of the applications
they produce.

There are known engineering techniques for
defending against buffer overrun errors. In general,
adopting a defensive programming style would go a long
way to solving this problem. Unfortunately, such coding
idioms are only suggestions; they must become the
standard way of doing business. It must become a
uniform requirement that software that processes data
from external sources shall examine that data for validity
prior to any other use. In addition, we must adopt more
thorough testing techniques to catch these types of errors
before the code goes into production.

4.2 Adopt Hostile Data Stream Testing

As software testing becomes ever more integrated
with software development, close attention must be paid
to testing for potential hostile attacks. The old paradigm,
"Garbage In, Garbage Out" is not acceptable and
produces software vulnerable to security attacks. We
propose a new paradigm, "Garbage In, Apology Out."

The testing technique outlined in Section 2 and
described in [5] has proven to be a reliable way of
detecting buffer overrun errors. Moreover, the two case
studies outlined in Section 3 illustrate the great need for
such testing - particularly in mature and commonly used
applications. What remains to be done is for these
techniques to be adopted by the community-at-large.

However, even if the techniques were adopted, the
problem will not be solved until software vendors become
more responsive to bug reports, particularly security-
related bug reports that have the potential for causing so
much harm.

43 Improve the Bug Reporting Mechanism

The security errors located in the two products
outlined in Section 3 were reported to the respective
vendors. In the first case study, the vendor completely
ignored these reports. Due to the lack of response, the bug
was then reported to the CERT/CC, who promised a 45-
day response. This is in keeping with their stated policy
[10]:

"Effective October 9, 2000, the CERT
Coordination Center will follow a new policy with
respect to the disclosure of vulnerability
information. All vulnerabilities reported to the
CERT/CC will be disclosed to the public 45 days
after the initial report, regardless of the existence
or availability of patches or workarounds from
affected vendors. Extenuating circumstances, such

as active exploitation, threats of an especially
serious (or trivial) nature, or situations that require
changes to an established standard may result in
earlier or later disclosure. Disclosures made by the
CERT/CC will include credit to the reporter unless
otherwise requested by the reporter. We will
apprise any affected vendors of our publication
plans, and negotiate alternate publication
schedules with the affected vendors when
required."

The PDF viewer problem was reported to CERT/CC on
April 26, 2002. The buffer overrun reported in that
disclosure is the one identified in [5] that allows storage
of specified data in a specified location. As of the time of
writing (March 2003), this defect still exists in the current
release of that product.

In the second case study, the vendor did fix the
critical problem, but did not publicly announce that the
new release was in fact a security fix for several months.
(Nor did they provide any credit to those who identified
and reported the problem to them.)

Perhaps what is needed is an accepted protocol for
reporting and fixing security vulnerabilities that would be
adopted by vendors, security testers, and customers (such
as the Federal Government). Ideally an independent body
would enforce this protocol. For now we'd settle for it
becoming the recommended best practice.

5. Summary

Latent security vulnerabilities pose a serious potential
risk to all users. Sadly, such vulnerabilities seem
omnipresent in typical application software. Given the
widespread use of applications that suffer from these
flaws, the implications for the user community as a whole
are disheartening.

Fortunately, there are ways to combat the problem.
The technique discussed in this paper, using hostile data
stream testing, brings to the fore many of the hidden bugs
in software that are due to buffer overrun errors. Since
this testing technique is highly automated, it can be
incorporated into today's regular development processes
with relatively little negative impact.

There are adoption challenges to be addressed before
this type of testing becomes common practice. Certainly
the typical technology transition issues inherent with any
new tool should be properly managed [8] [12]. However,
the risks of not adopting hostile data stream testing pose
an even greater problem.

As this paper was "going to press", an article
appeared over the newswire concerning a newly
discovered vulnerability in the widely used Sendmail

CMU/SEI-2003-SR-004 102

program [7] [9]. The flaw appears to be another instance
of a buffer overrun problem that arises when the mail
program parses an overly long header. This could allow
an attacker to send a specially formatted email that could
take control of the mail server and execute a malicious
program. The bug has been present in the Sendmail code
for 15 years, even though the code has been manually
inspected many times by many different people.

The final irony is that the flaw appears in a Sendmail
security function.

References

[1] Adobe, Inc. "Adobe PDF". Online at
http://www.adobe.com/products/acrobat/adobepdf.htinl.

[2] Aleph One. "Smashing The Stack For Fun And Profit."
Phrack49, Volume Seven, File 14, November 1996.

[3] Costello, S. "McAfee: New virus is first to infect image
files." ComputerWorld, June 13, 2002. Online at
http://www.computerworld.com/securitytopics/security/vir
us/story/0,10801,71968,00.html.

[4] Costello, S. "Users question JPEG virus; McAfee stands
firm." ComputerWorld, June 24, 2002. Online at
http://www.computerworld.com/securitytopics/security/stor
y/0,10801,72220,00.html.

[5] Jorgensen, A. "Testing with Hostile Data Streams." ACM
Software Engineering Notes, March 2003.

[6] Jorgensen, A. Software Design Based on Operational
Modes. Ph.D. dissertation, Florida Institute of Technology,
1999.

[7] Lemos, R. "Companies Mobilize to Patch Sendmail."
C\Net News.com, January 27, 2003. Online at
http://news.com.coni/2100-1009-
990802.html?part=dht&tag=ntop.

[8] SEI Technology Adoption program. Online at
http://www.sei.cmu.edu/adopting/adopting.html.

[9] Software Engineering Institute CERT/CC. "CERT
Advisory CA-2003-07 Remote Buffer Overflow in
Sendmail." Carnegie Mellon University, 2003. Online at
http://www.cert.org/advisories/CA-2003-07.html.

[10] Software Engineering Institute CERT/CC. "The CERT/CC
Vulnerability Disclosure Policy" Carnegie Mellon
University, 2003. Online at
http://www.kb.cert.org/vuls/html/disclosure.

[11] Software Engineering Institute. CERT Coordination
Center. Carnegie Mellon University. Online at
http://www.cert.org/.

[12] Tilley, S.; Huang, S.; and Payne, T. "On the Challenges of
Adopting ROTS Software." Proceedings of the 3""
International Workshop on Adoption-Centric Software
Engineering (ACSE 2003: May 9, 2003; Portland, OR).

[13] Vamosi, R. "SQL Slammer Slows Internet Traffic." C\Net
News.com, January 27, 2003. Online at
http://www.cnet.com/software/0-7760531-8-20820927-
l.html.

[14] Wagner, D., J. Foster, E. Brewer, and A. Aiken. "A First
Step Towards Automated Detection of Buffer Overrun
Vulnerabilities." Proceedings of the Year 2000 Network
and Distributed System Security Symposium, pp. 3-17,
San Diego, Calif ifomia, February 2000.

[15] Whittaker, J. and Jorgensen, A. "Why Software Fails."
ACM Software Engineering Notes,]u\y 1999.

CMU/SEI-2003-SR-004 103

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing '"s''^^S'!«!."*'"9
existing data sources, gathering and rraintaining the data needed, and completing and reviewing the collection of irtomnation. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for redudng this burden 1° ^^^'1"?°" "^^dqf;^,^
Serv^es Directorate for infortration Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Ariington, VA 22202-4302, and to the Office of
Management and Budget. Paperwork Reduction Project (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

June 2003

4. TITU AND SUBTITLE

yo International Workshop on Adoption-Centric Software Engineering

REPORT TYPE AND DATES COVERED

Final

5. FUNDING NUMBERS

F19628-00-C-0003

6. AUTHOR(S)

Dennis Smith (editor)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
SPONSORING/MONrrORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
HanscomAFB, MA 01731-2116

PERFORMING ORGANIZATION

REPORT NUMBER

CMU/SEI-2003-SR-004

10. SPONSORING/MONITORING AGENCY

REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report contains a set of papers that were presented at the Third International Workshop on Adoption-
centric Software Engineering (ACSE). The papers focused on overcoming barriers to adopting research tools.
Such barriers include the user's lack of familiarity with the tools, the mismatch between the tools and the us-
ers' cognitive models, a lack of interface maturity, limited tool scalability, poor interoperability and limited sup-
port for complex software engineering development tasks. The workshop papers explored innovative ap-
proaches to the adoption of software engineering tools and practices in particular by embedding them with
middleware products and other commonly available commercial products.

14. SUBJECT TERMS

software architecture, software architecture design, software
architectural tactics, quality attribute scenarios

15. NUMBER OF PAGES

114

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF

THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF

ABSTRACT

Unclassified

20. LMTATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Fomi 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

